{"title":"Guar gum-modified magnetic palladium nanocatalyst: C–N coupling reaction and STAT3-Mediated breast cancer therapy","authors":"Junrui Luan , Xin Dong , Shuwen Zhou","doi":"10.1016/j.jsamd.2025.100852","DOIUrl":null,"url":null,"abstract":"<div><div>The present study explains the unmoved synthesis of Pd nanoparticle-decorated guar gum utilized as Fe<sub>3</sub>O<sub>4</sub> NPs (Fe<sub>3</sub>O<sub>4</sub>@guar gum/Pd NPs), the resultant catalytic and biological applications within the context of an eco-friendly procedure. FT-IR, FE-SEM, TEM, EDS, and so on are some of the methods applied to evaluate the constructional and physicochemical features of such an unequaled substance. After the characterization of the process, we successfully used the prepared Fe<sub>3</sub>O<sub>4</sub>@guar gum/Pd NPs in the <em>N</em>-arylation of indole across C(aryl)-N bond formation from the pertaining haloarens (I, Br, Cl) through Ullmann-type coupling reactions. In addition, the new accelerator bears the ability to be recuperated and recycled 7 times. The MTT test was then used to investigate the extent to which Fe<sub>3</sub>O<sub>4</sub>@guar gum/Pd NP-treated cells suppressed human breast cancer. Healthy (HUVEC) and breast cancer cells, specifically MCF-10, were used for the evaluation. The Fe<sub>3</sub>O<sub>4</sub>@guar gum/Pd NPs showed an IC<sub>50</sub> value of 62 μg/mL against MCF-10, respectively. The presence of the material resulted in a 40–50% induction of cell apoptosis, along with down regulation of the anti-apoptotic marker. Finally, the Fe<sub>3</sub>O<sub>4</sub>@guar gum/Pd NPs showed suppressive properties on colony formation. According to our research, the Fe3O4@guar gum/Pd NPs can decrease STAT3 expression in the treated cells while increasing p53 levels. The effect of Fe<sub>3</sub>O<sub>4</sub>@guar gum/Pd NPs on human breast cancer cells demonstrates how important p53 and STAT3 are to the ensuing biological consequences. According to these findings, Fe<sub>3</sub>O<sub>4</sub>@guar gum/Pd NPs have a lot of promise as a therapy for human breast cancer cells.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"10 2","pages":"Article 100852"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246821792500005X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study explains the unmoved synthesis of Pd nanoparticle-decorated guar gum utilized as Fe3O4 NPs (Fe3O4@guar gum/Pd NPs), the resultant catalytic and biological applications within the context of an eco-friendly procedure. FT-IR, FE-SEM, TEM, EDS, and so on are some of the methods applied to evaluate the constructional and physicochemical features of such an unequaled substance. After the characterization of the process, we successfully used the prepared Fe3O4@guar gum/Pd NPs in the N-arylation of indole across C(aryl)-N bond formation from the pertaining haloarens (I, Br, Cl) through Ullmann-type coupling reactions. In addition, the new accelerator bears the ability to be recuperated and recycled 7 times. The MTT test was then used to investigate the extent to which Fe3O4@guar gum/Pd NP-treated cells suppressed human breast cancer. Healthy (HUVEC) and breast cancer cells, specifically MCF-10, were used for the evaluation. The Fe3O4@guar gum/Pd NPs showed an IC50 value of 62 μg/mL against MCF-10, respectively. The presence of the material resulted in a 40–50% induction of cell apoptosis, along with down regulation of the anti-apoptotic marker. Finally, the Fe3O4@guar gum/Pd NPs showed suppressive properties on colony formation. According to our research, the Fe3O4@guar gum/Pd NPs can decrease STAT3 expression in the treated cells while increasing p53 levels. The effect of Fe3O4@guar gum/Pd NPs on human breast cancer cells demonstrates how important p53 and STAT3 are to the ensuing biological consequences. According to these findings, Fe3O4@guar gum/Pd NPs have a lot of promise as a therapy for human breast cancer cells.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.