Mushtaq Muhammad Umer , Hein Venter , Owais Muhammad , Tamoor Shafique , Fuad A. Awwad , Emad A.A. Ismail
{"title":"Cognitive strategies for UAV trajectory optimization: Ensuring safety and energy efficiency in real-world scenarios","authors":"Mushtaq Muhammad Umer , Hein Venter , Owais Muhammad , Tamoor Shafique , Fuad A. Awwad , Emad A.A. Ismail","doi":"10.1016/j.asej.2025.103301","DOIUrl":null,"url":null,"abstract":"<div><div>Many sectors in aerial transportation use unmanned aircraft vehicles (UAVs) extensively. This becomes even more challenging in complex environments where not only it is required to avoid obstacles, but it also must be maintained for a prolonged period of time. This paper presents a novel approach to increase UAV autonomy through safe and efficient flight trajectory design. An optimization problem is formulated with external and internal safety constraints, and traversing collision free paths. The proposed work offers an energy efficient RRT algorithm, which is used to assess multiple trajectory alternatives. The simulation results confirm the achieved performance in finding the optimal energy path while obeying to the safety constraint. The data and performance metrics, show the system operated in a safe and energy efficient manner. This work provides a unified framework for UAV trajectory planning that guarantees a trade-off between safety and energy efficiency.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 3","pages":"Article 103301"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000425","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many sectors in aerial transportation use unmanned aircraft vehicles (UAVs) extensively. This becomes even more challenging in complex environments where not only it is required to avoid obstacles, but it also must be maintained for a prolonged period of time. This paper presents a novel approach to increase UAV autonomy through safe and efficient flight trajectory design. An optimization problem is formulated with external and internal safety constraints, and traversing collision free paths. The proposed work offers an energy efficient RRT algorithm, which is used to assess multiple trajectory alternatives. The simulation results confirm the achieved performance in finding the optimal energy path while obeying to the safety constraint. The data and performance metrics, show the system operated in a safe and energy efficient manner. This work provides a unified framework for UAV trajectory planning that guarantees a trade-off between safety and energy efficiency.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.