Trace copper determination in mate tea and tap water using FAAS and spray-assisted liquid phase microextraction

IF 4.6 2区 农林科学 Q2 CHEMISTRY, APPLIED Journal of Food Composition and Analysis Pub Date : 2025-01-25 DOI:10.1016/j.jfca.2025.107281
Kübra Karakebap , Hakan Serbest , Fatma Turak , Sezgin Bakırdere
{"title":"Trace copper determination in mate tea and tap water using FAAS and spray-assisted liquid phase microextraction","authors":"Kübra Karakebap ,&nbsp;Hakan Serbest ,&nbsp;Fatma Turak ,&nbsp;Sezgin Bakırdere","doi":"10.1016/j.jfca.2025.107281","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, a rapid, efficient and environmentally friendly analytical approach was proposed for the determination of trace copper by flame atomic absorption spectrometry (FAAS) after spray-assisted fine droplet formation based liquid phase microextraction (SFDF-LPME), which eliminates the use of dispersing solvents. With the help of a simple nozzle apparatus, an efficient distribution of the extraction solvent into the sample was achieved. The developed SFDF-LPME-FAAS method achieved a limit of detection (LOD) of 1.6 µg L<sup>−1</sup> and a limit of quantification (LOQ) of 5.2 µg L<sup>−1</sup> under optimal conditions. A wide linear range was recorded with a regression coefficient (R<sup>2</sup>) of 0.9987 between 5.0 and 100 µg L<sup>−1</sup>. The improvement in sensitivity was found to be 57.4-fold by comparing the slopes of the calibration plot equation of FAAS and SFDF-LPME-FAAS systems. The feasibility of the SFDF-LPME-FAAS method was evaluated by recovery studies using mate tea extracts and tap water samples. The good recovery results obtained for tap water samples and mate tea extracts in the range of 81.1 % - 113.8 % and 85.5 % - 120.8 %, respectively, showed that the method is applicable to similar matrices.</div></div>","PeriodicalId":15867,"journal":{"name":"Journal of Food Composition and Analysis","volume":"140 ","pages":"Article 107281"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Composition and Analysis","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088915752500095X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, a rapid, efficient and environmentally friendly analytical approach was proposed for the determination of trace copper by flame atomic absorption spectrometry (FAAS) after spray-assisted fine droplet formation based liquid phase microextraction (SFDF-LPME), which eliminates the use of dispersing solvents. With the help of a simple nozzle apparatus, an efficient distribution of the extraction solvent into the sample was achieved. The developed SFDF-LPME-FAAS method achieved a limit of detection (LOD) of 1.6 µg L−1 and a limit of quantification (LOQ) of 5.2 µg L−1 under optimal conditions. A wide linear range was recorded with a regression coefficient (R2) of 0.9987 between 5.0 and 100 µg L−1. The improvement in sensitivity was found to be 57.4-fold by comparing the slopes of the calibration plot equation of FAAS and SFDF-LPME-FAAS systems. The feasibility of the SFDF-LPME-FAAS method was evaluated by recovery studies using mate tea extracts and tap water samples. The good recovery results obtained for tap water samples and mate tea extracts in the range of 81.1 % - 113.8 % and 85.5 % - 120.8 %, respectively, showed that the method is applicable to similar matrices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
火焰原子吸收光谱-喷雾辅助液相微萃取法测定马茶和自来水中的微量铜
本研究提出了一种快速、高效、环保的喷雾辅助微滴形成液相微萃取(SFDF-LPME)后火焰原子吸收光谱法(FAAS)测定痕量铜的分析方法,该方法无需使用分散溶剂。在一个简单的喷嘴装置的帮助下,萃取溶剂被有效地分配到样品中。在最佳条件下,SFDF-LPME-FAAS方法的检出限为1.6 µg L−1,定量限为5.2 µg L−1。回归系数(R2)为0.9987,在5.0 ~ 100 µg L−1之间具有较宽的线性范围。通过比较SFDF-LPME-FAAS系统和SFDF-LPME-FAAS系统的校准图方程斜率,发现灵敏度提高了57.4倍。通过马偶茶提取物和自来水样品的回收率研究,对SFDF-LPME-FAAS法的可行性进行了评价。自来水样品和马茶提取物的回收率分别在81.1 % ~ 113.8 %和85.5 % ~ 120.8 %范围内,结果表明该方法适用于类似基质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Food Composition and Analysis
Journal of Food Composition and Analysis 工程技术-食品科技
CiteScore
6.20
自引率
11.60%
发文量
601
审稿时长
53 days
期刊介绍: The Journal of Food Composition and Analysis publishes manuscripts on scientific aspects of data on the chemical composition of human foods, with particular emphasis on actual data on composition of foods; analytical methods; studies on the manipulation, storage, distribution and use of food composition data; and studies on the statistics, use and distribution of such data and data systems. The Journal''s basis is nutrient composition, with increasing emphasis on bioactive non-nutrient and anti-nutrient components. Papers must provide sufficient description of the food samples, analytical methods, quality control procedures and statistical treatments of the data to permit the end users of the food composition data to evaluate the appropriateness of such data in their projects. The Journal does not publish papers on: microbiological compounds; sensory quality; aromatics/volatiles in food and wine; essential oils; organoleptic characteristics of food; physical properties; or clinical papers and pharmacology-related papers.
期刊最新文献
Effect of bee species on the physicochemical, bioactive, and microbiological properties of longan honey in Thailand Isotopic and biochemical fingerprinting of Auricularia heimuer grown on agricultural substrates: A multivariate approach to nutritional traceability Construction of multi-component CuO/ZIF-8@CNTs modified electrode for sensitive electrochemical detection of neohesperidin dihydrochalcone in liquor samples Understanding the physicochemical profile of honey: A comprehensive review of quality and authenticity parameters Intelligent identification of geographical origin of Xihu Longjing tea using dynamic time-resolved colorimetric sensor array fingerprint combined with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1