{"title":"High efficient C-band circularly polarized rectenna array with low-profile and lightweight","authors":"Zhou-Lin Fan, Shuo Cao, Xue-Xia Yang","doi":"10.1016/j.sspwt.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>A high efficient C-band circularly polarized rectenna array with low-profile and lightweight for wireless power transmission of space solar power stations is proposed and designed in this paper. The receiving antenna is an aperture-coupled microstrip quasi-square patch. The patch simultaneously excites two orthogonal modes of TM<sub>10</sub> and TM<sub>01</sub>, which have a phase difference of 90° by the perturbation method, so that the antenna operates in a circularly polarized state. The rectifier circuit is designed by microstrip lines in a parallel topology, and it consists of a stepped impedance matching network, a Schottky diode, two sector-branches as pass-through filter and a load. The input impedance of the rectifier and the characteristic impedance of the antenna feedline are both 50 <span><math><mi>Ω</mi></math></span> for being directly integrated into a rectenna. This rectenna has the advantages of low profile and scalability. The rectenna element, 3 × 3 and 4 × 4 subarrays are simulated and tested with good agreement being obtained. The measured results show that the rectification efficiencies of the element and the two subarrays are 73.1%, 72.7%, and 71.3% respectively at the center frequency of 5.76 GHz. Finally, a large rectenna array with 0.7 m aperture is designed to verify the scalability of the design. It will obtain 16.7 W of DC power at an efficiency of 65%. The rectenna has a profile of 1.61 mm and a surface density of less than 1.2 kg/m<sup>2</sup>.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 3","pages":"Pages 152-157"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Solar Power and Wireless Transmission","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950104024000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A high efficient C-band circularly polarized rectenna array with low-profile and lightweight for wireless power transmission of space solar power stations is proposed and designed in this paper. The receiving antenna is an aperture-coupled microstrip quasi-square patch. The patch simultaneously excites two orthogonal modes of TM10 and TM01, which have a phase difference of 90° by the perturbation method, so that the antenna operates in a circularly polarized state. The rectifier circuit is designed by microstrip lines in a parallel topology, and it consists of a stepped impedance matching network, a Schottky diode, two sector-branches as pass-through filter and a load. The input impedance of the rectifier and the characteristic impedance of the antenna feedline are both 50 for being directly integrated into a rectenna. This rectenna has the advantages of low profile and scalability. The rectenna element, 3 × 3 and 4 × 4 subarrays are simulated and tested with good agreement being obtained. The measured results show that the rectification efficiencies of the element and the two subarrays are 73.1%, 72.7%, and 71.3% respectively at the center frequency of 5.76 GHz. Finally, a large rectenna array with 0.7 m aperture is designed to verify the scalability of the design. It will obtain 16.7 W of DC power at an efficiency of 65%. The rectenna has a profile of 1.61 mm and a surface density of less than 1.2 kg/m2.