EGCG improve meat quality, restore lipid metabolism disorder and regulate intestinal flora in high-fat fed broilers

IF 3.8 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Poultry Science Pub Date : 2025-02-02 DOI:10.1016/j.psj.2025.104875
Lujia Gao, Chen Liu, Jiaqi Wu, Ying Cui, Man Zhang, Chongpeng Bi, Anshan Shan, Xiujing Dou
{"title":"EGCG improve meat quality, restore lipid metabolism disorder and regulate intestinal flora in high-fat fed broilers","authors":"Lujia Gao,&nbsp;Chen Liu,&nbsp;Jiaqi Wu,&nbsp;Ying Cui,&nbsp;Man Zhang,&nbsp;Chongpeng Bi,&nbsp;Anshan Shan,&nbsp;Xiujing Dou","doi":"10.1016/j.psj.2025.104875","DOIUrl":null,"url":null,"abstract":"<div><div>Excessive oil addition can easily result in decreased disease resistance in broilers, a drop in meat quality, and disorders of glucose and lipid metabolism. Epigallocatechin gallate (EGCG) is an important bioactive component of tea and has been shown to have promising effects on the metabolism of nutrients. This study was aimed at investigating the impact of EGCG supplementation through a high-fat diet (HFD) on production performance, meat quality, lipid metabolism and the influence of intestinal flora in broiler chickens. During the experimental phase, the broilers were segregated into three groups and provided with distinct diets: a basal diet, a high-fat diet, and a high-fat diet supplemented with EGCG, respectively. The results showed that EGCG increased lightness (L*) 24 h (<em>P</em> &lt; 0.05), and decreased drip loss (<em>P</em> &lt; 0.05) of chicken meat; Enhanced the presence of non-essential and flavor amino acids in muscle tissue and greatly enhanced the antioxidant capacity of broilers, leading to a noteworthy upregulation of antioxidant genes at the genetic level (<em>P</em> &lt; 0.05); Reduced in blood lipids, blood glucose, liver and abdominal fat accumulation in high-fat diet-induced obese chickens (<em>P</em> &lt; 0.05), markedly improved serum and liver biochemical parameters, and histological analysis results also demonstrated that EGCG markedly decreased hepatic lipid accumulation caused by HFD feeding. Compared to high-fat diet-induced obese chickens, supplementation of EGCG significantly lowered hepatic fatty acid synthase (FAS) expression and lipid synthesis metabolites, while fatty acid decomposition enzymes showed no significant changes. Furthermore, EGCG significantly decreased inflammation levels and oxidative damage in high-fat diet-induced obese chickens (<em>P</em> &lt; 0.05). 16S rRNA gene sequencing revealed that dietary supplementation of EGCG reduced the abundance of <em>Bacteroidota</em> and <em>Dielma</em>, while increasing the abundance of <em>Firmicutes, Turiciactor, Romboutsia</em>, and <em>Parasutterella</em>, thereby modulating the microbial composition. Dietary EGCG may have induced some of the alterations due to increased activity of the enzymes catalase (CAT) and superoxide dismutase (SOD), as well as decreased oxidation of proteins and lipids. Collectively, EGCG shows potential as an effective dietary additive for improving the high fat feeding of broiler health, feed nutrient utilization, and meat quality and nutritional value. This experiment provides a powerful new idea for the efficient utilization of oil feed and has important theoretical significance.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 3","pages":"Article 104875"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579125001129","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive oil addition can easily result in decreased disease resistance in broilers, a drop in meat quality, and disorders of glucose and lipid metabolism. Epigallocatechin gallate (EGCG) is an important bioactive component of tea and has been shown to have promising effects on the metabolism of nutrients. This study was aimed at investigating the impact of EGCG supplementation through a high-fat diet (HFD) on production performance, meat quality, lipid metabolism and the influence of intestinal flora in broiler chickens. During the experimental phase, the broilers were segregated into three groups and provided with distinct diets: a basal diet, a high-fat diet, and a high-fat diet supplemented with EGCG, respectively. The results showed that EGCG increased lightness (L*) 24 h (P < 0.05), and decreased drip loss (P < 0.05) of chicken meat; Enhanced the presence of non-essential and flavor amino acids in muscle tissue and greatly enhanced the antioxidant capacity of broilers, leading to a noteworthy upregulation of antioxidant genes at the genetic level (P < 0.05); Reduced in blood lipids, blood glucose, liver and abdominal fat accumulation in high-fat diet-induced obese chickens (P < 0.05), markedly improved serum and liver biochemical parameters, and histological analysis results also demonstrated that EGCG markedly decreased hepatic lipid accumulation caused by HFD feeding. Compared to high-fat diet-induced obese chickens, supplementation of EGCG significantly lowered hepatic fatty acid synthase (FAS) expression and lipid synthesis metabolites, while fatty acid decomposition enzymes showed no significant changes. Furthermore, EGCG significantly decreased inflammation levels and oxidative damage in high-fat diet-induced obese chickens (P < 0.05). 16S rRNA gene sequencing revealed that dietary supplementation of EGCG reduced the abundance of Bacteroidota and Dielma, while increasing the abundance of Firmicutes, Turiciactor, Romboutsia, and Parasutterella, thereby modulating the microbial composition. Dietary EGCG may have induced some of the alterations due to increased activity of the enzymes catalase (CAT) and superoxide dismutase (SOD), as well as decreased oxidation of proteins and lipids. Collectively, EGCG shows potential as an effective dietary additive for improving the high fat feeding of broiler health, feed nutrient utilization, and meat quality and nutritional value. This experiment provides a powerful new idea for the efficient utilization of oil feed and has important theoretical significance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Poultry Science
Poultry Science 农林科学-奶制品与动物科学
CiteScore
7.60
自引率
15.90%
发文量
0
审稿时长
94 days
期刊介绍: First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers. An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.
期刊最新文献
Transcriptome and chromatin accessibility landscape of ovarian development at different egg-laying stages in taihe black-bone silky fowls Corrigendum to “Pulsed electric field (PEF) processing of microalga Chlorella vulgaris and its digestibility in broiler feed” [Poultry Science, Volume 103, Issue 6, June 2024, 103721] Corrigendum to “Impact of adding zeolite to broilers' diet and litter on growth, blood parameters, immunity, and ammonia emission” [Poultry Science, Volume 103, Issue 9, September 2024, 103981] Research note: Mite infestations in non-descriptive indigenous chickens in Bangladesh: Present status and pathology Changes in gut microbiota affect DNA methylation levels and development of chicken muscle tissue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1