Machine learning to predict stroke risk from routine hospital data: A systematic review

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2025-01-28 DOI:10.1016/j.ijmedinf.2025.105811
William Heseltine-Carp , Megan Courtman , Daniel Browning , Aishwarya Kasabe , Michael Allen , Adam Streeter , Emmanuel Ifeachor , Martin James , Stephen Mullin
{"title":"Machine learning to predict stroke risk from routine hospital data: A systematic review","authors":"William Heseltine-Carp ,&nbsp;Megan Courtman ,&nbsp;Daniel Browning ,&nbsp;Aishwarya Kasabe ,&nbsp;Michael Allen ,&nbsp;Adam Streeter ,&nbsp;Emmanuel Ifeachor ,&nbsp;Martin James ,&nbsp;Stephen Mullin","doi":"10.1016/j.ijmedinf.2025.105811","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Stroke remains a leading cause of morbidity and mortality. Despite this, current risk stratification tools such as CHA<sub>2</sub>DS<sub>2</sub>-VASc and QRISK3 are of limited accuracy, particularly in those without a diagnosis of atrial-fibrillation. Hence, there is a need for more accurate stroke risk prediction models. Machine-learning (ML) may provide a solution to this by leveraging existing routine hospital databases to build accurate stroke risk prediction models and identify novel risk factors for stroke.</div></div><div><h3>Aims</h3><div>In this systematic review we appraise current research using ML to predict stroke risk from routine hospital data. Based on these findings we then highlight common methodological limitations and recommendations for future research.</div></div><div><h3>Methods</h3><div>In this review we identify 49 original research (38 in the general population and 11 in AF specific populations) articles from the PUBMED database from January-2013 to December-2024 using ML and routine hospital data to predict the risk of stroke.</div></div><div><h3>Results</h3><div>ML models were able to accurately predict stroke risk in both AF specific and general populations, with AUCs ranging from 0.64 to 0.99. Where tested, ML also consistently outperformed traditional risk stratification tool, such as CHA<sub>2</sub>DS<sub>2</sub>-VASc. ML also appeared useful in identifying several novel risk factors from electrocardiogram, laboratory test and echocardiography data.</div><div>However, the quality of datasets were often limited, there was a high suspicion of overfitting and models often lacked calibration, external validation and explainability analysis.</div></div><div><h3>Conclusion</h3><div>Whilst ML has shown great potential in stroke prediction and identifying novel risk factors for stroke, improvements in study methodology is required prior to integration of ML into routine healthcare. Future research should adhere to the EQUATOR guidance on prediction models and encourage interdisciplinary collaboration between computer scientists and clinicians. Further prospective RCTs are also required to validate models in the clinical setting and the identify barriers of integrating ML into routine healthcare.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"196 ","pages":"Article 105811"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000280","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Stroke remains a leading cause of morbidity and mortality. Despite this, current risk stratification tools such as CHA2DS2-VASc and QRISK3 are of limited accuracy, particularly in those without a diagnosis of atrial-fibrillation. Hence, there is a need for more accurate stroke risk prediction models. Machine-learning (ML) may provide a solution to this by leveraging existing routine hospital databases to build accurate stroke risk prediction models and identify novel risk factors for stroke.

Aims

In this systematic review we appraise current research using ML to predict stroke risk from routine hospital data. Based on these findings we then highlight common methodological limitations and recommendations for future research.

Methods

In this review we identify 49 original research (38 in the general population and 11 in AF specific populations) articles from the PUBMED database from January-2013 to December-2024 using ML and routine hospital data to predict the risk of stroke.

Results

ML models were able to accurately predict stroke risk in both AF specific and general populations, with AUCs ranging from 0.64 to 0.99. Where tested, ML also consistently outperformed traditional risk stratification tool, such as CHA2DS2-VASc. ML also appeared useful in identifying several novel risk factors from electrocardiogram, laboratory test and echocardiography data.
However, the quality of datasets were often limited, there was a high suspicion of overfitting and models often lacked calibration, external validation and explainability analysis.

Conclusion

Whilst ML has shown great potential in stroke prediction and identifying novel risk factors for stroke, improvements in study methodology is required prior to integration of ML into routine healthcare. Future research should adhere to the EQUATOR guidance on prediction models and encourage interdisciplinary collaboration between computer scientists and clinicians. Further prospective RCTs are also required to validate models in the clinical setting and the identify barriers of integrating ML into routine healthcare.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Machine learning for predicting outcomes of transcatheter aortic valve implantation: A systematic review AI-driven triage in emergency departments: A review of benefits, challenges, and future directions Predicting cancer survival at different stages: Insights from fair and explainable machine learning approaches The fading structural prominence of explanations in clinical studies Utilization, challenges, and training needs of digital health technologies: Perspectives from healthcare professionals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1