{"title":"PatchView: Multi-modality detection of security patches","authors":"Nitzan Farhi , Noam Koenigstein , Yuval Shavitt","doi":"10.1016/j.cose.2025.104356","DOIUrl":null,"url":null,"abstract":"<div><div>Patching software become overwhelming for system administrators due to the large amounts of patch releases. Administrator should prioritize security patches to reduce the exposure to attacks, and can use for this task the Common Vulnerabilities and Exposures (CVE) system, which catalogs known security vulnerabilities in publicly released software or firmware. However, some developers choose to omit CVE publication and merely update their repositories, keeping the vulnerabilities undisclosed. Such actions leave users uninformed and potentially at risk. To this end, we present PatchView, an innovative multi-modal system tailored for the classification of commits as security patches. The system draws upon three unique data modalities associated with a commit: (1) Time-series representation of developer behavioral data within the Git repository, (2) Commit messages, and (3) The code patches. PatchView merges three single-modality sub-models, each adept at interpreting data from its designated source. A distinguishing feature of this solution is its ability to elucidate its predictions by examining the outputs of each sub-model, underscoring its interpretability. Notably, this research pioneers a language-agnostic methodology for security patch classification. Our evaluations indicate that the proposed solution can reveal concealed security patches with an accuracy of 94.52% and F1-scoreof 95.12%. The code for this paper will be made publicly available on GitHub: <span><span>https://github.com/nitzanfarhi/PatchView</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"151 ","pages":"Article 104356"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825000458","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Patching software become overwhelming for system administrators due to the large amounts of patch releases. Administrator should prioritize security patches to reduce the exposure to attacks, and can use for this task the Common Vulnerabilities and Exposures (CVE) system, which catalogs known security vulnerabilities in publicly released software or firmware. However, some developers choose to omit CVE publication and merely update their repositories, keeping the vulnerabilities undisclosed. Such actions leave users uninformed and potentially at risk. To this end, we present PatchView, an innovative multi-modal system tailored for the classification of commits as security patches. The system draws upon three unique data modalities associated with a commit: (1) Time-series representation of developer behavioral data within the Git repository, (2) Commit messages, and (3) The code patches. PatchView merges three single-modality sub-models, each adept at interpreting data from its designated source. A distinguishing feature of this solution is its ability to elucidate its predictions by examining the outputs of each sub-model, underscoring its interpretability. Notably, this research pioneers a language-agnostic methodology for security patch classification. Our evaluations indicate that the proposed solution can reveal concealed security patches with an accuracy of 94.52% and F1-scoreof 95.12%. The code for this paper will be made publicly available on GitHub: https://github.com/nitzanfarhi/PatchView.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.