Orange sweet potato flour production: Comparative effects on ultrasound, drying, storage, and techno-economic assessment

Analaura Gómez-Cisneros , Alberto Ordaz , Liliana Santos-Zea , Anayansi Escalante-Aburto , Edith Ponce-Alquicira , Mariel Calderón-Oliver
{"title":"Orange sweet potato flour production: Comparative effects on ultrasound, drying, storage, and techno-economic assessment","authors":"Analaura Gómez-Cisneros ,&nbsp;Alberto Ordaz ,&nbsp;Liliana Santos-Zea ,&nbsp;Anayansi Escalante-Aburto ,&nbsp;Edith Ponce-Alquicira ,&nbsp;Mariel Calderón-Oliver","doi":"10.1016/j.afres.2025.100751","DOIUrl":null,"url":null,"abstract":"<div><div>Sweet potatoes (<em>Ipomoea batatas</em>) are recognized for their nutritional value and rich content of bioactive compounds, which contribute to their health benefits. Despite these advantages, the limited diversity of products derived from sweet potatoes has hindered their broader industrial application. This paper discusses the potential of transforming sweet potatoes into flour and explores the implications of drying processes on bioactive compound retention. Furthermore, it examines the efficacy of ultrasound as a method to enhance the extraction and preservation of these valuable compounds during processing. Therefore, this study aimed to evaluate the effects of 3 factors and their interaction: ultrasound treatment (40 kHz, 10 min at 25 °C), storage time after ultrasound (0–96 h), and drying methods (cabinet dehydration and freeze-drying) to obtain sweet potato flour without reducing bioactive compounds, color and antioxidant activity, as well as its techno-economic feasibility. Ultrasound treatment and drying processes mainly impact the final color, phenolic content, and carotenoids. Dehydration decreases the bioactive content compared to lyophilization; however, the ultrasound treatment causes an increase in concentration after 48 h of storage (53.8 % more than control without ultrasound). Also, dehydration increases the a* and b* levels in the final flours. Finally, the process was proposed to be scaled industrially using SuperPro Designer software. The techno-economic assessment demonstrated that obtaining flour through ultrasound and dehydration is both scalable and economically feasible, providing an industrial option for sweet potato commercialization.</div></div>","PeriodicalId":8168,"journal":{"name":"Applied Food Research","volume":"5 1","pages":"Article 100751"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772502225000617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sweet potatoes (Ipomoea batatas) are recognized for their nutritional value and rich content of bioactive compounds, which contribute to their health benefits. Despite these advantages, the limited diversity of products derived from sweet potatoes has hindered their broader industrial application. This paper discusses the potential of transforming sweet potatoes into flour and explores the implications of drying processes on bioactive compound retention. Furthermore, it examines the efficacy of ultrasound as a method to enhance the extraction and preservation of these valuable compounds during processing. Therefore, this study aimed to evaluate the effects of 3 factors and their interaction: ultrasound treatment (40 kHz, 10 min at 25 °C), storage time after ultrasound (0–96 h), and drying methods (cabinet dehydration and freeze-drying) to obtain sweet potato flour without reducing bioactive compounds, color and antioxidant activity, as well as its techno-economic feasibility. Ultrasound treatment and drying processes mainly impact the final color, phenolic content, and carotenoids. Dehydration decreases the bioactive content compared to lyophilization; however, the ultrasound treatment causes an increase in concentration after 48 h of storage (53.8 % more than control without ultrasound). Also, dehydration increases the a* and b* levels in the final flours. Finally, the process was proposed to be scaled industrially using SuperPro Designer software. The techno-economic assessment demonstrated that obtaining flour through ultrasound and dehydration is both scalable and economically feasible, providing an industrial option for sweet potato commercialization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Comparative effect of boiling, microwave and ultrasonication treatment on microstructure, nutritional and microbial quality of Tofu Orange sweet potato flour production: Comparative effects on ultrasound, drying, storage, and techno-economic assessment Liposome-like encapsulation of fish oil-based self-nano emulsifying formulation for improved bioavailability Enhancing grape juice with Lacticaseibacillus rhamnosus CWKu-12: Assessing probiotic viability, physicochemical changes, sensory characteristics, and quality kinetics throughout storage Combined effects of alginate based active edible coatings and irradiation treatment on the quality characteristics of Beef Meat at 2°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1