{"title":"Compact Gaussian basis sets for stochastic DFT calculations","authors":"Marcel David Fabian , Eran Rabani , Roi Baer","doi":"10.1016/j.cplett.2025.141912","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents new Gaussian single- and double-zeta basis sets optimized for stochastic density functional theory (sDFT) using real-space auxiliary grids. Previous studies showed standard basis sets like STO-3G and 6-31G are sub-optimal for this approach. Our basis set’s Gaussian-type orbitals (GTOs) resemble norm-conserving pseudo-orbitals for H, C, N, O, F, and Si, but minimize real-space and momentum-space support. These basis sets achieve accuracy comparable to established sets while offering improved efficiency for sDFT calculations with auxiliary grids.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"865 ","pages":"Article 141912"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261425000521","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents new Gaussian single- and double-zeta basis sets optimized for stochastic density functional theory (sDFT) using real-space auxiliary grids. Previous studies showed standard basis sets like STO-3G and 6-31G are sub-optimal for this approach. Our basis set’s Gaussian-type orbitals (GTOs) resemble norm-conserving pseudo-orbitals for H, C, N, O, F, and Si, but minimize real-space and momentum-space support. These basis sets achieve accuracy comparable to established sets while offering improved efficiency for sDFT calculations with auxiliary grids.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.