The multidrug-resistant Candida auris, Candida haemulonii complex and phylogenetic related species: Insights into antifungal resistance mechanisms

IF 4.8 Q1 MICROBIOLOGY Current Research in Microbial Sciences Pub Date : 2025-01-01 DOI:10.1016/j.crmicr.2025.100354
Lívia S. Ramos , Pedro F. Barbosa , Carolline M.A. Lorentino , Joice C. Lima , Antonio L. Braga , Raquel V. Lima , Lucas Giovanini , Ana Lúcia Casemiro , Nahyara L.M. Siqueira , Stefanie C. Costa , Célia F. Rodrigues , Maryam Roudbary , Marta H. Branquinha , André L.S. Santos
{"title":"The multidrug-resistant Candida auris, Candida haemulonii complex and phylogenetic related species: Insights into antifungal resistance mechanisms","authors":"Lívia S. Ramos ,&nbsp;Pedro F. Barbosa ,&nbsp;Carolline M.A. Lorentino ,&nbsp;Joice C. Lima ,&nbsp;Antonio L. Braga ,&nbsp;Raquel V. Lima ,&nbsp;Lucas Giovanini ,&nbsp;Ana Lúcia Casemiro ,&nbsp;Nahyara L.M. Siqueira ,&nbsp;Stefanie C. Costa ,&nbsp;Célia F. Rodrigues ,&nbsp;Maryam Roudbary ,&nbsp;Marta H. Branquinha ,&nbsp;André L.S. Santos","doi":"10.1016/j.crmicr.2025.100354","DOIUrl":null,"url":null,"abstract":"<div><div>The rise of multidrug-resistant (MDR) fungal pathogens poses a serious global threat to human health. Of particular concern are <em>Candida auris</em>, the <em>Candida haemulonii</em> complex (which includes C<em>. haemulonii sensu stricto, C. duobushaemulonii</em> and <em>C. haemulonii</em> var. <em>vulnera</em>), and phylogenetically related species, including <em>C. pseudohaemulonii</em> and <em>C. vulturna</em>. These emerging, widespread, and opportunistic pathogens have drawn significant attention due to their reduced susceptibility to commonly used antifungal agents, particularly azoles and polyenes, and, in some cases, therapy-induced resistance to echinocandins. Notably, <em>C. auris</em> is classified in the critical priority group on the World Health Organization's fungal priority pathogens list, which highlights fungal species capable of causing systemic infections with significant mortality and morbidity risks as well as the challenges posed by their MDR profiles, limited treatment and management options. The mechanisms underlying antifungal resistance within these emerging fungal species is still being explored, but some advances have been achieved in the past few years. In this review, we compile current literature on the distribution of susceptible and resistant clinical strains of <em>C. auris, C. haemulonii</em> complex, <em>C. pseudohaemulonii</em> and <em>C. vulturna</em> across various antifungal classes, including azoles (fluconazole, voriconazole, itraconazole), polyenes (amphotericin B), echinocandins (caspofungin, micafungin, anidulafungin), and pyrimidine analogues (flucytosine). We also outline the main antifungal resistance mechanisms identified in planktonic cells of these yeast species. Finally, we explore the impact of biofilm formation, a classical virulence attribute of fungi, on antifungal resistance, highlighting the resistance mechanisms associated with this complex microbial structure that have been uncovered to date.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"8 ","pages":"Article 100354"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517425000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of multidrug-resistant (MDR) fungal pathogens poses a serious global threat to human health. Of particular concern are Candida auris, the Candida haemulonii complex (which includes C. haemulonii sensu stricto, C. duobushaemulonii and C. haemulonii var. vulnera), and phylogenetically related species, including C. pseudohaemulonii and C. vulturna. These emerging, widespread, and opportunistic pathogens have drawn significant attention due to their reduced susceptibility to commonly used antifungal agents, particularly azoles and polyenes, and, in some cases, therapy-induced resistance to echinocandins. Notably, C. auris is classified in the critical priority group on the World Health Organization's fungal priority pathogens list, which highlights fungal species capable of causing systemic infections with significant mortality and morbidity risks as well as the challenges posed by their MDR profiles, limited treatment and management options. The mechanisms underlying antifungal resistance within these emerging fungal species is still being explored, but some advances have been achieved in the past few years. In this review, we compile current literature on the distribution of susceptible and resistant clinical strains of C. auris, C. haemulonii complex, C. pseudohaemulonii and C. vulturna across various antifungal classes, including azoles (fluconazole, voriconazole, itraconazole), polyenes (amphotericin B), echinocandins (caspofungin, micafungin, anidulafungin), and pyrimidine analogues (flucytosine). We also outline the main antifungal resistance mechanisms identified in planktonic cells of these yeast species. Finally, we explore the impact of biofilm formation, a classical virulence attribute of fungi, on antifungal resistance, highlighting the resistance mechanisms associated with this complex microbial structure that have been uncovered to date.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Microbial Sciences
Current Research in Microbial Sciences Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
7.90
自引率
0.00%
发文量
81
审稿时长
66 days
期刊最新文献
Human microbiome in post-acute COVID-19 syndrome (PACS) Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines Evaluation and identification of metabolites produced by Cytobacillus firmus in the interaction with Arabidopsis thaliana plants and their effect on Solanum lycopersicum Antibacterial potential and phytochemical analysis of two ethnomedicinally important plants The role of universal stress protein Usp1413 in meropenem adaptive resistance and environmental stress responses in Acinetobacter baumannii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1