Misreading or living in denial? Reindeer overstocking and long-term effects on vegetation: An experimental approach

IF 2.7 3区 环境科学与生态学 Q2 ECOLOGY Ecosphere Pub Date : 2025-02-05 DOI:10.1002/ecs2.70174
Bård-Jørgen Bårdsen, Hans Tømmervik, Marius Warg Næss, Jarle Werner Bjerke
{"title":"Misreading or living in denial? Reindeer overstocking and long-term effects on vegetation: An experimental approach","authors":"Bård-Jørgen Bårdsen,&nbsp;Hans Tømmervik,&nbsp;Marius Warg Næss,&nbsp;Jarle Werner Bjerke","doi":"10.1002/ecs2.70174","DOIUrl":null,"url":null,"abstract":"<p>In an era marked by accelerating climate change, habitat loss, and shifting land use patterns, it is crucial to understand the intricate effects of multiple stressors on ecosystems. This long-term study sheds light on the complex interplay between grazing and habitat characteristics on pasture dynamics and offers insights into how various stressors affect ecosystems facing environmental challenges. Our experimental study documents that manipulation in restricting reindeer grazing and trampling through fencing led to higher ground-lichen biomass, volume, height (particularly in one habitat), and cover compared with open-control plots. The effect of fencing varied depending on habitat, and for lichen biomass, volume, and height, the lowest values were observed in windswept exposed ridges and mountain heaths (exposed/mountain), and the highest values were observed in forested and leeward-heath (forest/leeward) habitat. The average (past five years) number of reindeer per square kilometer had indirect effects that varied across habitats. We observed negative density dependence in the open plots for height in the exposed/mountain habitats. Fencing reduced this effect, which was also valid for biomass except that habitat did not affect the effect of density. Surprisingly, in the forest/leeward areas, the estimated effects of reindeer density on biomass, volume, and height were positive for the fenced plots. Negative density dependence was evident for lichen cover irrespective of habitats and manipulation, even though this effect had little biological significance, whereas cover at the initiation of the experiment positively affected later recordings (particularly for the controls). Our models showed high explanatory power, highlighting the significance of reindeer density and habitat as predictors of ground-lichen dynamics. Overall, negative density-dependent effects were observed in the open plots in the most exposed areas, and fencing mitigated the negative impact of reindeer on lichens, particularly in less exposed areas. We challenge the “equilibrium” and “nonequilibrium” frameworks for explaining livestock-pasture dynamics. We propose future studies to estimate the relative importance of density-dependent and density-independent factors, such as climate, using models considering both mechanisms simultaneously.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"16 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70174","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In an era marked by accelerating climate change, habitat loss, and shifting land use patterns, it is crucial to understand the intricate effects of multiple stressors on ecosystems. This long-term study sheds light on the complex interplay between grazing and habitat characteristics on pasture dynamics and offers insights into how various stressors affect ecosystems facing environmental challenges. Our experimental study documents that manipulation in restricting reindeer grazing and trampling through fencing led to higher ground-lichen biomass, volume, height (particularly in one habitat), and cover compared with open-control plots. The effect of fencing varied depending on habitat, and for lichen biomass, volume, and height, the lowest values were observed in windswept exposed ridges and mountain heaths (exposed/mountain), and the highest values were observed in forested and leeward-heath (forest/leeward) habitat. The average (past five years) number of reindeer per square kilometer had indirect effects that varied across habitats. We observed negative density dependence in the open plots for height in the exposed/mountain habitats. Fencing reduced this effect, which was also valid for biomass except that habitat did not affect the effect of density. Surprisingly, in the forest/leeward areas, the estimated effects of reindeer density on biomass, volume, and height were positive for the fenced plots. Negative density dependence was evident for lichen cover irrespective of habitats and manipulation, even though this effect had little biological significance, whereas cover at the initiation of the experiment positively affected later recordings (particularly for the controls). Our models showed high explanatory power, highlighting the significance of reindeer density and habitat as predictors of ground-lichen dynamics. Overall, negative density-dependent effects were observed in the open plots in the most exposed areas, and fencing mitigated the negative impact of reindeer on lichens, particularly in less exposed areas. We challenge the “equilibrium” and “nonequilibrium” frameworks for explaining livestock-pasture dynamics. We propose future studies to estimate the relative importance of density-dependent and density-independent factors, such as climate, using models considering both mechanisms simultaneously.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecosphere
Ecosphere ECOLOGY-
CiteScore
4.70
自引率
3.70%
发文量
378
审稿时长
15 weeks
期刊介绍: The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.
期刊最新文献
A centurial signature of anthropogenic nitrogen and carbon in California serpentine ecosystems Misreading or living in denial? Reindeer overstocking and long-term effects on vegetation: An experimental approach Plant trait networks reveal the ecological strategies of Arabidopsis thaliana along ontogeny Environmental DNA supports importance of heterogeneous pond landscapes for arthropod diversity conservation A novel method for mapping high-precision animal locations using high-resolution imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1