An Extensive Review of Machine Learning and Deep Learning Techniques on Network Intrusion Detection for IoT

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS Transactions on Emerging Telecommunications Technologies Pub Date : 2025-02-05 DOI:10.1002/ett.70064
Supongmen Walling, Sibesh Lodh
{"title":"An Extensive Review of Machine Learning and Deep Learning Techniques on Network Intrusion Detection for IoT","authors":"Supongmen Walling,&nbsp;Sibesh Lodh","doi":"10.1002/ett.70064","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Internet of Things (IoT) has transformed technology interactions by connecting devices and facilitating information exchange. However, IoT's interconnectivity presents significant security challenges, including network security, device vulnerabilities, data confidentiality, and authentication. Many IoT devices lack strong security measures, making them susceptible to misuse. Additionally, privacy concerns arise due to sensitive data storage. Solutions such as secure authentication, encryption, and encrypted communication are vital. Intrusion detection systems (IDS) play a crucial role in proactively protecting networks, yet they encounter significant challenges in identifying new intrusions and minimizing false alarms. To tackle these issues, researchers have developed IDS systems that leverage machine learning (ML) and deep learning (DL) techniques. This survey article not only provides an in-depth analysis of current IoT IDS but also summarizes the techniques, deployment strategies, validation methods, and datasets commonly used in the development of these systems. A thorough analysis of modern Network Intrusion Detection System (NIDS) publications is also included, which evaluates, examines, and contrasts NIDS approaches in the context of the IoT with regard to its architecture, detection methods, and validation strategies, dangers that have been addressed, and deployed algorithms setting it apart from earlier surveys that predominantly concentrate on traditional systems. We concentrate on IoT NIDS implemented by ML and DL in this survey given that learning algorithms have an excellent track record for success in security and privacy. The study, in our opinion, will be beneficial for academic and industrial research in identifying IoT dangers and problems, in implementing their own NIDS and in proposing novel innovative techniques in an IoT context while taking IoT limits into consideration.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70064","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) has transformed technology interactions by connecting devices and facilitating information exchange. However, IoT's interconnectivity presents significant security challenges, including network security, device vulnerabilities, data confidentiality, and authentication. Many IoT devices lack strong security measures, making them susceptible to misuse. Additionally, privacy concerns arise due to sensitive data storage. Solutions such as secure authentication, encryption, and encrypted communication are vital. Intrusion detection systems (IDS) play a crucial role in proactively protecting networks, yet they encounter significant challenges in identifying new intrusions and minimizing false alarms. To tackle these issues, researchers have developed IDS systems that leverage machine learning (ML) and deep learning (DL) techniques. This survey article not only provides an in-depth analysis of current IoT IDS but also summarizes the techniques, deployment strategies, validation methods, and datasets commonly used in the development of these systems. A thorough analysis of modern Network Intrusion Detection System (NIDS) publications is also included, which evaluates, examines, and contrasts NIDS approaches in the context of the IoT with regard to its architecture, detection methods, and validation strategies, dangers that have been addressed, and deployed algorithms setting it apart from earlier surveys that predominantly concentrate on traditional systems. We concentrate on IoT NIDS implemented by ML and DL in this survey given that learning algorithms have an excellent track record for success in security and privacy. The study, in our opinion, will be beneficial for academic and industrial research in identifying IoT dangers and problems, in implementing their own NIDS and in proposing novel innovative techniques in an IoT context while taking IoT limits into consideration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
期刊最新文献
Distributed Cooperative Spectrum Optimization Method Based on Coalition Formation Game for Ocean and Traffic Iot An Extensive Review of Machine Learning and Deep Learning Techniques on Network Intrusion Detection for IoT Optimal Beamforming for Covert Communication in MIMO Relay Systems An Enhanced IOMT and Blockchain-Based Heart Disease Monitoring System Using BS-THA and OA-CNN Blockchain Empowered Quantum Safe Batch Aggregate Signature Algorithm for Authenticated Data Trading in Internet of Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1