{"title":"Lubrication Prediction of Sphere-Gradient Coated Half Space Interfaces","authors":"Xiaoya Gong, Tao He","doi":"10.1002/ls.1728","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Functionally graded coating (FGC) has played a pivotal role in numerous engineering applications owing to its exceptional properties. This work proposes a novel elastohydrodynamic lubrication (EHL) model with FGC, in which the elastic deformation and stress are computed using influence coefficients (ICs) and discrete convolution-fast Fourier transform (DC-FFT) algorithm. Comparisons are made with homogeneous EHL solutions and finite element analysis (FEA) to validate its accuracy. The study systematically explores how coating elastic modulus, coating thickness and substrate elastic modulus influence contact and lubrication behaviours. The developed model is expected to establish a theoretical framework for FGC material design, enhancing the performance of friction pairs.</p>\n </div>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"37 2","pages":"142-157"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1728","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Functionally graded coating (FGC) has played a pivotal role in numerous engineering applications owing to its exceptional properties. This work proposes a novel elastohydrodynamic lubrication (EHL) model with FGC, in which the elastic deformation and stress are computed using influence coefficients (ICs) and discrete convolution-fast Fourier transform (DC-FFT) algorithm. Comparisons are made with homogeneous EHL solutions and finite element analysis (FEA) to validate its accuracy. The study systematically explores how coating elastic modulus, coating thickness and substrate elastic modulus influence contact and lubrication behaviours. The developed model is expected to establish a theoretical framework for FGC material design, enhancing the performance of friction pairs.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.