Hotspots of Global Water Resource Changes and Their Causes

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Earths Future Pub Date : 2025-02-05 DOI:10.1029/2024EF005461
Jiaxin Lu, Dongdong Kong, Yongqiang Zhang, Yuxuan Xie, Xihui Gu, Aminjon Gulakhmadov
{"title":"Hotspots of Global Water Resource Changes and Their Causes","authors":"Jiaxin Lu,&nbsp;Dongdong Kong,&nbsp;Yongqiang Zhang,&nbsp;Yuxuan Xie,&nbsp;Xihui Gu,&nbsp;Aminjon Gulakhmadov","doi":"10.1029/2024EF005461","DOIUrl":null,"url":null,"abstract":"<p>In recent decades, terrestrial water storage anomaly (TWSA) has experienced systematic shifts. Despite these observations, debates continue regarding the hotspots where terrestrial water storage changes dramatically and their causes. This study aims to address these controversies. Utilizing four TWSA products, this research analyzes TWSA's changing patterns and identifies hotspots of significant shifts from 1982 to 2019. The study employed the Bayesian Three-Cornered Hat method to synthesize the best-quality TWSA from original four TWSA products and the trends consistent method to identify regions with highly consistent trends. Subsequently, the elasticity coefficient method was used to reveal the causes of TWSA's dramatic changes in hotspots. Results show that TWSA has a declining trend over 66.1% global terrestrial areas during 1982–2019, with an average rate of −0.5 mm/y. The study identified six regions where marked changes in TWSA occurred, including Northern China, Southern Canada, Northern India, Central-Southern Europe, Southwestern Africa, and Northeastern South America. Attribution analysis reveals that the leaf area index is the predominant factor affecting TWSA changes, dominating in 40.3% of global regions. Potential evapotranspiration (PET) follows closely, dominating in 39.8% of global regions. Meanwhile, only 13.1% and 6.8% of global regions are primarily influenced by precipitation and cropland density respectively. The dominant factor varies in different latitudes. Vegetation greening primarily controls TWSA changes in the high-latitude regions of the Northern Hemisphere. This study identified hotspots of TWSA changes and investigated the causes of these variations. Those results will offer direction for prioritizing areas in future water resource management.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 2","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005461","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005461","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, terrestrial water storage anomaly (TWSA) has experienced systematic shifts. Despite these observations, debates continue regarding the hotspots where terrestrial water storage changes dramatically and their causes. This study aims to address these controversies. Utilizing four TWSA products, this research analyzes TWSA's changing patterns and identifies hotspots of significant shifts from 1982 to 2019. The study employed the Bayesian Three-Cornered Hat method to synthesize the best-quality TWSA from original four TWSA products and the trends consistent method to identify regions with highly consistent trends. Subsequently, the elasticity coefficient method was used to reveal the causes of TWSA's dramatic changes in hotspots. Results show that TWSA has a declining trend over 66.1% global terrestrial areas during 1982–2019, with an average rate of −0.5 mm/y. The study identified six regions where marked changes in TWSA occurred, including Northern China, Southern Canada, Northern India, Central-Southern Europe, Southwestern Africa, and Northeastern South America. Attribution analysis reveals that the leaf area index is the predominant factor affecting TWSA changes, dominating in 40.3% of global regions. Potential evapotranspiration (PET) follows closely, dominating in 39.8% of global regions. Meanwhile, only 13.1% and 6.8% of global regions are primarily influenced by precipitation and cropland density respectively. The dominant factor varies in different latitudes. Vegetation greening primarily controls TWSA changes in the high-latitude regions of the Northern Hemisphere. This study identified hotspots of TWSA changes and investigated the causes of these variations. Those results will offer direction for prioritizing areas in future water resource management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
期刊最新文献
Empirical Models of Shallow Groundwater and Multi-Hazard Flood Forecasts as Sea-Levels Rise Understanding Europe's Forest Harvesting Regimes Maize Yield Changes Under Sulfate Aerosol Climate Intervention Using Three Global Gridded Crop Models Hotspots of Global Water Resource Changes and Their Causes Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1