Improving Typhoon Predictions by Integrating Data-Driven Machine Learning Model With Physics Model Based on the Spectral Nudging and Data Assimilation

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Earth and Space Science Pub Date : 2025-02-05 DOI:10.1029/2024EA003952
Zeyi Niu, Wei Huang, Lei Zhang, Lin Deng, Haibo Wang, Yuhua Yang, Dongliang Wang, Hong Li
{"title":"Improving Typhoon Predictions by Integrating Data-Driven Machine Learning Model With Physics Model Based on the Spectral Nudging and Data Assimilation","authors":"Zeyi Niu,&nbsp;Wei Huang,&nbsp;Lei Zhang,&nbsp;Lin Deng,&nbsp;Haibo Wang,&nbsp;Yuhua Yang,&nbsp;Dongliang Wang,&nbsp;Hong Li","doi":"10.1029/2024EA003952","DOIUrl":null,"url":null,"abstract":"<p>The rapid advancement of data-driven machine learning (ML) models has improved typhoon track forecasts, but challenges remain, such as underestimating typhoon intensity and lacking interpretability. This study introduces an ML-driven hybrid typhoon model, where Pangu forecasts constrain the Weather Research and Forecasting (WRF) model using spectral nudging. The results indicate that track forecasts from the WRF simulation nudged by Pangu forecasts significantly outperform those from the WRF simulation using the NCEP GFS initial field and those from the ECMWF IFS for Typhoon Doksuri (2023). Besides, the typhoon intensity forecasts from Pangu-nudging are notably stronger than those from the ECMWF IFS, demonstrating that the hybrid model effectively leverages the strengths of both ML and physical models. Furthermore, this study is the first to explore the significance of data assimilation in ML-driven hybrid typhoon model. The findings reveal that after assimilating water vapor channels from the FY-4B AGRI, the errors in typhoon intensity forecasts are significantly reduced.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003952","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003952","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of data-driven machine learning (ML) models has improved typhoon track forecasts, but challenges remain, such as underestimating typhoon intensity and lacking interpretability. This study introduces an ML-driven hybrid typhoon model, where Pangu forecasts constrain the Weather Research and Forecasting (WRF) model using spectral nudging. The results indicate that track forecasts from the WRF simulation nudged by Pangu forecasts significantly outperform those from the WRF simulation using the NCEP GFS initial field and those from the ECMWF IFS for Typhoon Doksuri (2023). Besides, the typhoon intensity forecasts from Pangu-nudging are notably stronger than those from the ECMWF IFS, demonstrating that the hybrid model effectively leverages the strengths of both ML and physical models. Furthermore, this study is the first to explore the significance of data assimilation in ML-driven hybrid typhoon model. The findings reveal that after assimilating water vapor channels from the FY-4B AGRI, the errors in typhoon intensity forecasts are significantly reduced.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
期刊最新文献
Microphysical Properties and Turbulence Evolution Characteristics of a Typical Coastal Fog Event in the Beibu Gulf, China Thank You to Our 2024 Reviewers Interpretable Machine Learning Biosignature Detection From Ocean Worlds Analogue CO2 Isotopologue Data Active Seismic Exploration of Planetary Subsurfaces via Compressive Sensing Geophysics Indicator of Sandstone-Type Uranium Mineralization in the Northern Ordos Basin, China: Analysis From Gravity and Magnetic Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1