WoodAD: A New Dataset and a Comparison of Deep Learning Approaches for Wood Anomaly Detection

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems Pub Date : 2025-02-05 DOI:10.1111/exsy.13834
Omar del-Tejo-Catala, Javier Perez, Nicolas Garcia, Juan-Carlos Perez-Cortes, Javier Del Ser
{"title":"WoodAD: A New Dataset and a Comparison of Deep Learning Approaches for Wood Anomaly Detection","authors":"Omar del-Tejo-Catala,&nbsp;Javier Perez,&nbsp;Nicolas Garcia,&nbsp;Juan-Carlos Perez-Cortes,&nbsp;Javier Del Ser","doi":"10.1111/exsy.13834","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Anomaly detection is a crucial task in computer vision, with applications ranging from quality control to security monitoring, among many others. Recent technological advancements have enabled near-perfect solutions on benchmark datasets like MVTec, raising the need for novel datasets that pose new challenges for this modelling task. This work presents a novel Wood Anomaly Detection (WoodAD) dataset, which includes defects in wooden pieces that result in challenges for the most advanced techniques applied to other established datasets. This article evaluates such challenges posed by WoodAD with one-class and few-shot supervised learning approaches. Our experiments herein reveal that EfficientAD, a state-of-the-art method previously excelling on the MVTec dataset, outperforms all other one-class learning approaches. Nevertheless, there is room for improvement, as EfficientAD achieves a 0.535 pixel/segmentation average precision (AP) over the complete test set. UNet, a well-known pixel-level classification architecture, leveraged few-shot supervised learning to enhance the pixel AP score, achieving 0.862 pixel/segmentation AP over the entire test set. Our WoodAD dataset represents a valuable contribution to the field of anomaly detection, offering complex image textures and challenging defects. Researchers and practitioners are encouraged to leverage this dataset to push the boundaries of anomaly detection and develop more robust and effective solutions for more complex real-world applications. The WoodAD dataset has been made publicly available in Kaggle (https://www.kaggle.com/datasets/itiresearch/wood-anomaly-detection-one-class-classification).</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13834","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection is a crucial task in computer vision, with applications ranging from quality control to security monitoring, among many others. Recent technological advancements have enabled near-perfect solutions on benchmark datasets like MVTec, raising the need for novel datasets that pose new challenges for this modelling task. This work presents a novel Wood Anomaly Detection (WoodAD) dataset, which includes defects in wooden pieces that result in challenges for the most advanced techniques applied to other established datasets. This article evaluates such challenges posed by WoodAD with one-class and few-shot supervised learning approaches. Our experiments herein reveal that EfficientAD, a state-of-the-art method previously excelling on the MVTec dataset, outperforms all other one-class learning approaches. Nevertheless, there is room for improvement, as EfficientAD achieves a 0.535 pixel/segmentation average precision (AP) over the complete test set. UNet, a well-known pixel-level classification architecture, leveraged few-shot supervised learning to enhance the pixel AP score, achieving 0.862 pixel/segmentation AP over the entire test set. Our WoodAD dataset represents a valuable contribution to the field of anomaly detection, offering complex image textures and challenging defects. Researchers and practitioners are encouraged to leverage this dataset to push the boundaries of anomaly detection and develop more robust and effective solutions for more complex real-world applications. The WoodAD dataset has been made publicly available in Kaggle (https://www.kaggle.com/datasets/itiresearch/wood-anomaly-detection-one-class-classification).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Systems
Expert Systems 工程技术-计算机:理论方法
CiteScore
7.40
自引率
6.10%
发文量
266
审稿时长
24 months
期刊介绍: Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper. As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.
期刊最新文献
No-Reference Image Quality Assessment: Past, Present, and Future A Novel Approach to Fire Detection With Enhanced Target Localisation and Recognition Improving Paragraph Similarity by Sentence Interaction With BERT Medical Data Classification Using Genetic Programming: A Systematic Literature Review WoodAD: A New Dataset and a Comparison of Deep Learning Approaches for Wood Anomaly Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1