Antonio Tiago Lima, Sami Jabbour, José Britto-Júnior, Demétrio Martinho Ramos de Carvalho, Adriano Fregonesi, Fernanda V. Mariano, Valéria Barbosa de Souza, Andre Almeida Schenka, Edson Antunes, Gilberto De Nucci
{"title":"6-Nitrodopamine potentiates catecholamine-induced contractions of human isolated vas deferens","authors":"Antonio Tiago Lima, Sami Jabbour, José Britto-Júnior, Demétrio Martinho Ramos de Carvalho, Adriano Fregonesi, Fernanda V. Mariano, Valéria Barbosa de Souza, Andre Almeida Schenka, Edson Antunes, Gilberto De Nucci","doi":"10.1096/fba.2024-00183","DOIUrl":null,"url":null,"abstract":"<p>6-Nitrodopamine (6-ND) is the main catecholamine released from human isolated vas deferens and the adrenergic nervous system is known to play a major role in the contractions of the epididymal portion of the vas deferens. Here it was investigated the interactions of 6-ND on the contractions of the human isolated vas deferens induced by either classical catecholamines or electric-field stimulation (EFS). The vas deferens obtained from 106 patients who underwent vasectomy surgery were mounted in a 10-mL glass chamber filled with warmed (37°C) and oxygenated Krebs–Henseleit's solution. The strips were pretreated (30 min) with 6-ND (0.1–100 nM) and exposed to increasing concentrations of noradrenaline (0.01–300 M), dopamine (0.00001–10 mM), or adrenaline (0.01–300 M). The strips were also submitted to EFS in tissues pre-incubated or not with 6-ND (1–100 nM), noradrenaline (100 nM), adrenaline (100 nM), or dopamine (100 nM). Catecholamine basal release was evaluated by LC–MS/MS and expression of tyrosine hydroxylase by both immunohistochemistry (IC) and fluorescence in-situ hybridization (FISH). Pre-incubation of the vas deferens with 6-ND caused marked potentiation of the contractions induced by noradrenaline, adrenaline, and dopamine, as characterized by significant increases in E<sub>max</sub>, without changes in pEC<sub>50</sub> values. 6-nitrodopamine also caused significant increases in the EFS-induced contractions. The basal release of 6-ND was not affected by pre-treatment of the tissues with tetrodotoxin. Tyrosine hydroxylase was detected in epithelial cells of human vas deferens samples by both IC and FISH. The results clearly demonstrate that epithelium-derived 6-ND is a major modulator of human vas deferens contractility.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"7 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2024-00183","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fba.2024-00183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
6-Nitrodopamine (6-ND) is the main catecholamine released from human isolated vas deferens and the adrenergic nervous system is known to play a major role in the contractions of the epididymal portion of the vas deferens. Here it was investigated the interactions of 6-ND on the contractions of the human isolated vas deferens induced by either classical catecholamines or electric-field stimulation (EFS). The vas deferens obtained from 106 patients who underwent vasectomy surgery were mounted in a 10-mL glass chamber filled with warmed (37°C) and oxygenated Krebs–Henseleit's solution. The strips were pretreated (30 min) with 6-ND (0.1–100 nM) and exposed to increasing concentrations of noradrenaline (0.01–300 M), dopamine (0.00001–10 mM), or adrenaline (0.01–300 M). The strips were also submitted to EFS in tissues pre-incubated or not with 6-ND (1–100 nM), noradrenaline (100 nM), adrenaline (100 nM), or dopamine (100 nM). Catecholamine basal release was evaluated by LC–MS/MS and expression of tyrosine hydroxylase by both immunohistochemistry (IC) and fluorescence in-situ hybridization (FISH). Pre-incubation of the vas deferens with 6-ND caused marked potentiation of the contractions induced by noradrenaline, adrenaline, and dopamine, as characterized by significant increases in Emax, without changes in pEC50 values. 6-nitrodopamine also caused significant increases in the EFS-induced contractions. The basal release of 6-ND was not affected by pre-treatment of the tissues with tetrodotoxin. Tyrosine hydroxylase was detected in epithelial cells of human vas deferens samples by both IC and FISH. The results clearly demonstrate that epithelium-derived 6-ND is a major modulator of human vas deferens contractility.