Subsequent commutation failure suppression strategy of hybrid cascaded HVDC system based on coordinated control of CEC and VDCOL

IF 1.6 Q4 ENERGY & FUELS IET Energy Systems Integration Pub Date : 2024-12-19 DOI:10.1049/esi2.12180
He Wang, Daqian Zhang, Jing Bian, Jiazhi Guo, Shiqiang Li
{"title":"Subsequent commutation failure suppression strategy of hybrid cascaded HVDC system based on coordinated control of CEC and VDCOL","authors":"He Wang,&nbsp;Daqian Zhang,&nbsp;Jing Bian,&nbsp;Jiazhi Guo,&nbsp;Shiqiang Li","doi":"10.1049/esi2.12180","DOIUrl":null,"url":null,"abstract":"<p>The inverter side of hybrid cascaded HVDC adopts the structure of Modular Multilevel Converter (MMC) in series with Line Commutated Converter (LCC). The complete system amalgamates the advantages of LCC with MMC, but it also makes the interaction process of multi-controller more complicated during the failure of the system. Therefore, through the analysis of the controller interaction process during the system fault, this paper proposes a multi-controller coordinated control strategy based on the inverter side of the hybrid cascaded HVDC system, which can suppress the subsequent commutation failure of the system and take into account the recovery characteristics of the system during the fault, which has certain practical application value. Initially, the operational properties of current error control (CEC) and voltage-dependent current limit control (VDCOL) are examined, and a coordinated control technique for subsequent commutation failure suppression and rapid power recovery during fault is proposed. Secondly, aiming at the problem of power return between MMC after VDCOL regulation, the new VDCOL control curve is coordinated to improve the MMC control strategy to ensure stable recovery during system failure. Finally, the simulation model is built in PSCAD/EMTDC simulation environment. The simulation results indicate that the proposed control technique can successfully achieve the synchronisation of commutation failure suppression and rapid, stable power restoration, thereby enhancing the operational performance of hybrid cascaded HVDC.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 S1","pages":"932-945"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12180","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The inverter side of hybrid cascaded HVDC adopts the structure of Modular Multilevel Converter (MMC) in series with Line Commutated Converter (LCC). The complete system amalgamates the advantages of LCC with MMC, but it also makes the interaction process of multi-controller more complicated during the failure of the system. Therefore, through the analysis of the controller interaction process during the system fault, this paper proposes a multi-controller coordinated control strategy based on the inverter side of the hybrid cascaded HVDC system, which can suppress the subsequent commutation failure of the system and take into account the recovery characteristics of the system during the fault, which has certain practical application value. Initially, the operational properties of current error control (CEC) and voltage-dependent current limit control (VDCOL) are examined, and a coordinated control technique for subsequent commutation failure suppression and rapid power recovery during fault is proposed. Secondly, aiming at the problem of power return between MMC after VDCOL regulation, the new VDCOL control curve is coordinated to improve the MMC control strategy to ensure stable recovery during system failure. Finally, the simulation model is built in PSCAD/EMTDC simulation environment. The simulation results indicate that the proposed control technique can successfully achieve the synchronisation of commutation failure suppression and rapid, stable power restoration, thereby enhancing the operational performance of hybrid cascaded HVDC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
期刊最新文献
Advancements in large-scale energy storage technologies for power systems Subsequent commutation failure suppression strategy of hybrid cascaded HVDC system based on coordinated control of CEC and VDCOL Wind speed prediction model based on multiscale temporal-preserving embedding broad learning system Virtual inertia calculation and virtual power system stabiliser design for stability enhancement of virtual synchronous generator system under transient condition Revisiting the role of thermal energy storage in low-temperature electrified district heating systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1