Mohamed A. A. Mahmoud, Oussama Er-Raji, Bhushan P. Kore, Martin Bivour, Patricia S. C. Schulze, Stefan W. Glunz, Andreas W. Bett, Juliane Borchert
{"title":"Tuning Perovskite Crystal Growth Dynamics Using Additives on Textured Silicon Substrates","authors":"Mohamed A. A. Mahmoud, Oussama Er-Raji, Bhushan P. Kore, Martin Bivour, Patricia S. C. Schulze, Stefan W. Glunz, Andreas W. Bett, Juliane Borchert","doi":"10.1002/solr.202400471","DOIUrl":null,"url":null,"abstract":"<p>Double-sided textured silicon solar cells with micrometer-sized pyramid structure are used as bottom cells in monolithic tandem structures to decrease reflection losses. As top cell material, frequently perovskites are used. In this work, various additives are investigated to enhance the perovskite absorber quality, as a top cell fabricated using the hybrid route. In the context of the hybrid route, it is found that urea or methylammonium chloride (MACl) can effectively increase the grain size and improve the absorber quality, while formamidinium chloride (FACl) cannot. With urea, the crystallization can be tuned without leaving any voids in the film (unlike MACl). However, when annealed at a high annealing temperature, the excessive crystal growth with urea causes non-conformal coating and high defect density. By adjusting the annealing conditions and additive concentration, the crystal growth of the perovskite top cell on the micrometer-sized silicon pyramids can be fine-tuned, ensuring that the perovskite layer conformally coated the pyramids. The use of additives not only improves crystallization but also enhances the conversion of the inorganics, particularly at the hole transport layer (HTL) interface. Moreover, this work contributes to a better understanding of perovskite crystallization dynamics and how to control it, especially on textured substrates.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 24","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400471","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400471","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Double-sided textured silicon solar cells with micrometer-sized pyramid structure are used as bottom cells in monolithic tandem structures to decrease reflection losses. As top cell material, frequently perovskites are used. In this work, various additives are investigated to enhance the perovskite absorber quality, as a top cell fabricated using the hybrid route. In the context of the hybrid route, it is found that urea or methylammonium chloride (MACl) can effectively increase the grain size and improve the absorber quality, while formamidinium chloride (FACl) cannot. With urea, the crystallization can be tuned without leaving any voids in the film (unlike MACl). However, when annealed at a high annealing temperature, the excessive crystal growth with urea causes non-conformal coating and high defect density. By adjusting the annealing conditions and additive concentration, the crystal growth of the perovskite top cell on the micrometer-sized silicon pyramids can be fine-tuned, ensuring that the perovskite layer conformally coated the pyramids. The use of additives not only improves crystallization but also enhances the conversion of the inorganics, particularly at the hole transport layer (HTL) interface. Moreover, this work contributes to a better understanding of perovskite crystallization dynamics and how to control it, especially on textured substrates.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.