{"title":"Leveraging modality-specific and shared features for RGB-T salient object detection","authors":"Shuo Wang, Gang Yang, Qiqi Xu, Xun Dai","doi":"10.1049/cvi2.12307","DOIUrl":null,"url":null,"abstract":"<p>Most of the existing RGB-T salient object detection methods are usually based on dual-stream encoding single-stream decoding network architecture. These models always rely on the quality of fusion features, which often focus on modality-shared features and overlook modality-specific features, thus failing to fully utilise the rich information contained in multi-modality data. To this end, a modality separate tri-stream net (MSTNet), which consists of a tri-stream encoding (TSE) structure and a tri-stream decoding (TSD) structure is proposed. The TSE explicitly separates and extracts the modality-shared and modality-specific features to improve the utilisation of multi-modality data. In addition, based on the hybrid-attention and cross-attention mechanism, we design an enhanced complementary fusion module (ECF), which fully considers the complementarity between the features to be fused and realises high-quality feature fusion. Furthermore, in TSD, the quality of uni-modality features is ensured under the constraint of supervision. Finally, to make full use of the rich multi-level and multi-scale decoding features contained in TSD, the authors design the adaptive multi-scale decoding module and the multi-stream feature aggregation module to improve the decoding capability. Extensive experiments on three public datasets show that the MSTNet outperforms 14 state-of-the-art methods, demonstrating that this method can extract and utilise the multi-modality information more adequately and extract more complete and rich features, thus improving the model's performance. The code will be released at https://github.com/JOOOOKII/MSTNet.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 8","pages":"1285-1299"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12307","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12307","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Most of the existing RGB-T salient object detection methods are usually based on dual-stream encoding single-stream decoding network architecture. These models always rely on the quality of fusion features, which often focus on modality-shared features and overlook modality-specific features, thus failing to fully utilise the rich information contained in multi-modality data. To this end, a modality separate tri-stream net (MSTNet), which consists of a tri-stream encoding (TSE) structure and a tri-stream decoding (TSD) structure is proposed. The TSE explicitly separates and extracts the modality-shared and modality-specific features to improve the utilisation of multi-modality data. In addition, based on the hybrid-attention and cross-attention mechanism, we design an enhanced complementary fusion module (ECF), which fully considers the complementarity between the features to be fused and realises high-quality feature fusion. Furthermore, in TSD, the quality of uni-modality features is ensured under the constraint of supervision. Finally, to make full use of the rich multi-level and multi-scale decoding features contained in TSD, the authors design the adaptive multi-scale decoding module and the multi-stream feature aggregation module to improve the decoding capability. Extensive experiments on three public datasets show that the MSTNet outperforms 14 state-of-the-art methods, demonstrating that this method can extract and utilise the multi-modality information more adequately and extract more complete and rich features, thus improving the model's performance. The code will be released at https://github.com/JOOOOKII/MSTNet.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf