{"title":"A survey on person and vehicle re-identification","authors":"Zhaofa Wang, Liyang Wang, Zhiping Shi, Miaomiao Zhang, Qichuan Geng, Na Jiang","doi":"10.1049/cvi2.12316","DOIUrl":null,"url":null,"abstract":"<p>Person/vehicle re-identification aims to use technologies such as cross-camera retrieval to associate the same person (same vehicle) in the surveillance videos at different locations, different times, and images captured by different cameras so as to achieve cross-surveillance image matching, person retrieval and trajectory tracking. It plays an extremely important role in the fields of intelligent security, criminal investigation etc. In recent years, the rapid development of deep learning technology has significantly propelled the advancement of re-identification (Re-ID) technology. An increasing number of technical methods have emerged, aiming to enhance Re-ID performance. This paper summarises four popular research areas in the current field of re-identification, focusing on the current research hotspots. These areas include the multi-task learning domain, the generalisation learning domain, the cross-modality domain, and the optimisation learning domain. Specifically, the paper analyses various challenges faced within these domains and elaborates on different deep learning frameworks and networks that address these challenges. A comparative analysis of re-identification tasks from various classification perspectives is provided, introducing mainstream research directions and current achievements. Finally, insights into future development trends are presented.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 8","pages":"1235-1268"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12316","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12316","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Person/vehicle re-identification aims to use technologies such as cross-camera retrieval to associate the same person (same vehicle) in the surveillance videos at different locations, different times, and images captured by different cameras so as to achieve cross-surveillance image matching, person retrieval and trajectory tracking. It plays an extremely important role in the fields of intelligent security, criminal investigation etc. In recent years, the rapid development of deep learning technology has significantly propelled the advancement of re-identification (Re-ID) technology. An increasing number of technical methods have emerged, aiming to enhance Re-ID performance. This paper summarises four popular research areas in the current field of re-identification, focusing on the current research hotspots. These areas include the multi-task learning domain, the generalisation learning domain, the cross-modality domain, and the optimisation learning domain. Specifically, the paper analyses various challenges faced within these domains and elaborates on different deep learning frameworks and networks that address these challenges. A comparative analysis of re-identification tasks from various classification perspectives is provided, introducing mainstream research directions and current achievements. Finally, insights into future development trends are presented.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf