El Mehdi Bellfkih, Said Nouh, Imrane Chems Eddine Idrissi, Khalid Louartiti, Jamal Mouline
{"title":"Genetic Algorithm-Based Method for Discovering Involutory MDS Matrices","authors":"El Mehdi Bellfkih, Said Nouh, Imrane Chems Eddine Idrissi, Khalid Louartiti, Jamal Mouline","doi":"10.1155/2023/5951901","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, we present an innovative approach for the discovery of involutory maximum distance separable (MDS) matrices over finite fields <span></span><math></math>, derived from MDS self-dual codes, by employing a technique based on genetic algorithms. The significance of involutory MDS matrices lies in their unique properties, making them valuable in various applications, particularly in coding theory and cryptography. We propose a genetic algorithm-based method that efficiently searches for involutory MDS matrices, ensuring their self-duality and maximization of distances between code words. By leveraging the genetic algorithm’s ability to evolve solutions over generations, our approach automates the process of identifying optimal involutory MDS matrices. Through comprehensive experiments, we demonstrate the effectiveness of our method and also unveil essential insights into automorphism groups within MDS self-dual codes. These findings hold promise for practical applications and extend the horizons of knowledge in both coding theory and cryptographic systems.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2023 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/5951901","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/5951901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present an innovative approach for the discovery of involutory maximum distance separable (MDS) matrices over finite fields , derived from MDS self-dual codes, by employing a technique based on genetic algorithms. The significance of involutory MDS matrices lies in their unique properties, making them valuable in various applications, particularly in coding theory and cryptography. We propose a genetic algorithm-based method that efficiently searches for involutory MDS matrices, ensuring their self-duality and maximization of distances between code words. By leveraging the genetic algorithm’s ability to evolve solutions over generations, our approach automates the process of identifying optimal involutory MDS matrices. Through comprehensive experiments, we demonstrate the effectiveness of our method and also unveil essential insights into automorphism groups within MDS self-dual codes. These findings hold promise for practical applications and extend the horizons of knowledge in both coding theory and cryptographic systems.