The Fractional Variable-Order Grassi–Miller Map: Chaos, Complexity, and Control

IF 0.9 Q3 MATHEMATICS, APPLIED Computational and Mathematical Methods Pub Date : 2025-02-27 DOI:10.1155/cmm4/6674521
Adel Ouannas, Souad Bensid Ahmed, Giuseppe Grassi, Mohammed Al Horani, Amina Aicha Khennaoui, Amel Hioual
{"title":"The Fractional Variable-Order Grassi–Miller Map: Chaos, Complexity, and Control","authors":"Adel Ouannas,&nbsp;Souad Bensid Ahmed,&nbsp;Giuseppe Grassi,&nbsp;Mohammed Al Horani,&nbsp;Amina Aicha Khennaoui,&nbsp;Amel Hioual","doi":"10.1155/cmm4/6674521","DOIUrl":null,"url":null,"abstract":"<p>In the topic of discrete variable-order systems governed by fractional difference equations, this study makes a significant contribution by introducing two innovative variable-order versions of the fractional Grassi–Miller system. These new formulations are aimed at deepening our understanding of the complex dynamics that such systems exhibit. The research specifically delves into the chaotic dynamical behaviors manifested by these systems: one version being the fractional Grassi–Miller map with commensurate variable order and the other being the fractional Grassi–Miller map with incommensurate variable order. To provide a comprehensive analysis, this study incorporates a variety of variable orders, encompassing both exponential and sinusoidal functions. These variable orders are crucial in exploring how different functional forms influence the behavior of the system. By varying these orders, the research seeks to uncover the patterns and chaotic dynamics that emerge under different conditions. A suite of advanced numerical methods is employed to rigorously analyze and validate the presence of chaotic attractors in these newly proposed variable fractional versions of the Grassi–Miller system. The methods used include bifurcation diagrams, phase portraits, Lyapunov exponents, approximate entropy, <i>C</i><sub>0</sub> complexity, and 0–1 test for chaos. Through the application of these numerical methods, the study thoroughly validates the existence of chaotic attractors in the proposed variable fractional versions of the Grassi–Miller system. The findings underscore the rich and complex behaviors that arise from different variable orders, offering new insights into the dynamics of fractional-order systems.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/6674521","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/6674521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the topic of discrete variable-order systems governed by fractional difference equations, this study makes a significant contribution by introducing two innovative variable-order versions of the fractional Grassi–Miller system. These new formulations are aimed at deepening our understanding of the complex dynamics that such systems exhibit. The research specifically delves into the chaotic dynamical behaviors manifested by these systems: one version being the fractional Grassi–Miller map with commensurate variable order and the other being the fractional Grassi–Miller map with incommensurate variable order. To provide a comprehensive analysis, this study incorporates a variety of variable orders, encompassing both exponential and sinusoidal functions. These variable orders are crucial in exploring how different functional forms influence the behavior of the system. By varying these orders, the research seeks to uncover the patterns and chaotic dynamics that emerge under different conditions. A suite of advanced numerical methods is employed to rigorously analyze and validate the presence of chaotic attractors in these newly proposed variable fractional versions of the Grassi–Miller system. The methods used include bifurcation diagrams, phase portraits, Lyapunov exponents, approximate entropy, C0 complexity, and 0–1 test for chaos. Through the application of these numerical methods, the study thoroughly validates the existence of chaotic attractors in the proposed variable fractional versions of the Grassi–Miller system. The findings underscore the rich and complex behaviors that arise from different variable orders, offering new insights into the dynamics of fractional-order systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
The Fractional Variable-Order Grassi–Miller Map: Chaos, Complexity, and Control On the Efficiency of the Newly Developed Composite Randomized Response Technique Approximate Solution of an Integrodifferential Equation Generalized by Harry Dym Equation Using the Picard Successive Method A Mathematical Analysis of the Impact of Immature Mosquitoes on the Transmission Dynamics of Malaria Parameter-Uniform Convergent Numerical Approach for Time-Fractional Singularly Perturbed Partial Differential Equations With Large Time Delay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1