Geography and Environment Shape Spatial Genetic Variation and Predict Climate Maladaptation Across Isolated and Disjunct Populations of Pinus muricata.

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Pub Date : 2025-02-06 DOI:10.1111/mec.17638
Lanie M Galland, Trevor M Faske, Carolina Osuna-Mascaró, Sarah M Bisbing, Thomas L Parchman
{"title":"Geography and Environment Shape Spatial Genetic Variation and Predict Climate Maladaptation Across Isolated and Disjunct Populations of Pinus muricata.","authors":"Lanie M Galland, Trevor M Faske, Carolina Osuna-Mascaró, Sarah M Bisbing, Thomas L Parchman","doi":"10.1111/mec.17638","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing the evolutionary potential of rare species with limited migration amidst ongoing climate change requires an understanding of patterns of genetic variation and local adaptation. In contrast to the large distributions and population sizes of most pines, Pinus muricata (bishop pine) occurs in a few isolated populations along coastal western North America and is listed as threatened by the IUCN. To quantify how current genetic variation is influenced by distribution and environment, we generated reduced representation DNA sequencing data for most extant populations of P. muricata (12 locations, 7828 loci). We assessed geographic variation in differentiation and diversity and used genetic-environment association (GEA) analyses to characterise the contribution of environmental variables to local adaptation and genetic structure. Based on these inferences, we quantified genomic offset as a relative estimate of potential maladaptation under mild (SSP1-2.6) and severe (SSP5-8.5) climate change scenarios across 2041-2060 and 2081-2100. Despite occurring in small, isolated populations, genetic diversity was not low in P. muricata. Population differentiation was, however, defined across a hierarchy of spatial scales, with stands generally forming genetically identifiable groups across latitude and environments. GEA analyses implicated temperature- and soil-related variables as most strongly contributing to local adaptation. Estimates of maladaptation to future climate varied non-linearly with latitude, increased with severity of projections and over time, and were predicted by increases in annual temperature. Our results suggest that isolation and local adaptation have shaped genetic variation among disjunct populations and that these factors may shape maladaptation risk under projected climate change.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17638"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17638","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing the evolutionary potential of rare species with limited migration amidst ongoing climate change requires an understanding of patterns of genetic variation and local adaptation. In contrast to the large distributions and population sizes of most pines, Pinus muricata (bishop pine) occurs in a few isolated populations along coastal western North America and is listed as threatened by the IUCN. To quantify how current genetic variation is influenced by distribution and environment, we generated reduced representation DNA sequencing data for most extant populations of P. muricata (12 locations, 7828 loci). We assessed geographic variation in differentiation and diversity and used genetic-environment association (GEA) analyses to characterise the contribution of environmental variables to local adaptation and genetic structure. Based on these inferences, we quantified genomic offset as a relative estimate of potential maladaptation under mild (SSP1-2.6) and severe (SSP5-8.5) climate change scenarios across 2041-2060 and 2081-2100. Despite occurring in small, isolated populations, genetic diversity was not low in P. muricata. Population differentiation was, however, defined across a hierarchy of spatial scales, with stands generally forming genetically identifiable groups across latitude and environments. GEA analyses implicated temperature- and soil-related variables as most strongly contributing to local adaptation. Estimates of maladaptation to future climate varied non-linearly with latitude, increased with severity of projections and over time, and were predicted by increases in annual temperature. Our results suggest that isolation and local adaptation have shaped genetic variation among disjunct populations and that these factors may shape maladaptation risk under projected climate change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
期刊最新文献
Epigenomic Changes in Ostrinia Moths Under Elevated Pupal and Adult Temperature. The Idiot's Guide to Effective Population Size. Culture-Independent Species-Level Taxonomic and Functional Characterisation of Bacteroides, the Core Bacterial Genus Within Reptile Guts. The Roles of Plasticity and Selection in Rapid Phenotypic Changes at the Pacific Oyster Invasion Front in Europe. Delimiting Species-Prospects and Challenges for DNA Barcoding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1