{"title":"Multifaceted roles of the ATG8 protein family in plant autophagy: from autophagosome biogenesis to cargo recognition.","authors":"Yixin Wu, Rui Xu, Xiaohong Zhuang","doi":"10.1016/j.jmb.2025.168981","DOIUrl":null,"url":null,"abstract":"<p><p>In plant cells, autophagy is an essential quality control process by forming a double-membrane structure named the autophagosome, which envelopes and transports the cargoes to the vacuole for degradation/recycling. Autophagy-related (ATG) 8, a key regulator in autophagy, exerts multifunctional roles during autophagy. ATG8 anchors on the phagophore membrane through the ATG8 conjugation system and participates in different steps during autophagosome formation. Accumulating evidence has demonstrated that ATG8 cooperates with other ATG or non-ATG proteins in autophagosome biogenesis. Meanwhile, ATG8 plays an important role in cargo recognition, which is mainly attributed by the specific interactions between ATG8 and the selective autophagy receptors (SARs) or cargos for selective autophagy. Emerging roles of ATG8 in non-canonical autophagy have been recently reported in plants for different stress adaptation. Here, we review the diverse functions of ATG8 in plants, focusing on autophagosome biogenesis and cargo recognition in canonical and non-canonical autophagy.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"168981"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.168981","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In plant cells, autophagy is an essential quality control process by forming a double-membrane structure named the autophagosome, which envelopes and transports the cargoes to the vacuole for degradation/recycling. Autophagy-related (ATG) 8, a key regulator in autophagy, exerts multifunctional roles during autophagy. ATG8 anchors on the phagophore membrane through the ATG8 conjugation system and participates in different steps during autophagosome formation. Accumulating evidence has demonstrated that ATG8 cooperates with other ATG or non-ATG proteins in autophagosome biogenesis. Meanwhile, ATG8 plays an important role in cargo recognition, which is mainly attributed by the specific interactions between ATG8 and the selective autophagy receptors (SARs) or cargos for selective autophagy. Emerging roles of ATG8 in non-canonical autophagy have been recently reported in plants for different stress adaptation. Here, we review the diverse functions of ATG8 in plants, focusing on autophagosome biogenesis and cargo recognition in canonical and non-canonical autophagy.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.