Amit Phogat , Sowmya Ramaswamy Krishnan , Medha Pandey , M. Michael Gromiha
{"title":"ZFP-CanPred: Predicting the effect of mutations in zinc-finger proteins in cancers using protein language models","authors":"Amit Phogat , Sowmya Ramaswamy Krishnan , Medha Pandey , M. Michael Gromiha","doi":"10.1016/j.ymeth.2025.01.020","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc-finger proteins (ZNFs) constitute the largest family of transcription factors and play crucial roles in various cellular processes. Missense mutations in ZNFs significantly alter protein-DNA interactions, potentially leading to the development of various types of cancers. This study presents ZFP-CanPred, a novel deep learning-based model for predicting cancer-associated driver mutations in ZNFs. The representations derived from protein language models (PLMs) from the structural neighbourhood of mutated sites were utilized to train ZFP-CanPred for differentiating between cancer-causing and neutral mutations. ZFP-CanPred, achieved a superior performance with an accuracy of 0.72, F1-score of 0.79, and area under the Receiver Operating Characteristics (ROC) Curve (AUC) of 0.74, on an independent test set. In a comparative analysis against 11 existing prediction tools using a curated dataset of 331 mutations, ZFP-CanPred demonstrated the highest AU-ROC of 0.74, outperforming both generic and cancer-specific methods. The model’s balanced performance across specificity and sensitivity addresses a significant limitation of current methodologies. The source code and other related files are available on GitHub at <span><span>https://github.com/amitphogat/ZFP-CanPred.git</span><svg><path></path></svg></span>. We envisage that the present study contributes to understand the oncogenic processes and developing targeted therapeutic strategies.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"235 ","pages":"Pages 55-63"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325000295","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc-finger proteins (ZNFs) constitute the largest family of transcription factors and play crucial roles in various cellular processes. Missense mutations in ZNFs significantly alter protein-DNA interactions, potentially leading to the development of various types of cancers. This study presents ZFP-CanPred, a novel deep learning-based model for predicting cancer-associated driver mutations in ZNFs. The representations derived from protein language models (PLMs) from the structural neighbourhood of mutated sites were utilized to train ZFP-CanPred for differentiating between cancer-causing and neutral mutations. ZFP-CanPred, achieved a superior performance with an accuracy of 0.72, F1-score of 0.79, and area under the Receiver Operating Characteristics (ROC) Curve (AUC) of 0.74, on an independent test set. In a comparative analysis against 11 existing prediction tools using a curated dataset of 331 mutations, ZFP-CanPred demonstrated the highest AU-ROC of 0.74, outperforming both generic and cancer-specific methods. The model’s balanced performance across specificity and sensitivity addresses a significant limitation of current methodologies. The source code and other related files are available on GitHub at https://github.com/amitphogat/ZFP-CanPred.git. We envisage that the present study contributes to understand the oncogenic processes and developing targeted therapeutic strategies.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.