Investigation to Understand the Role of Phase Variation in Red Emitting Eu3+-Doped Calcium Magnesium Silicate Phosphor for In Vitro Bioimaging.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-02-05 DOI:10.1021/acsabm.4c01779
Navya Sara Kuriyan, Ayswaria Deepti, Baby Chakrapani P S, Sabeena Mannilthodi
{"title":"Investigation to Understand the Role of Phase Variation in Red Emitting Eu<sup>3+</sup>-Doped Calcium Magnesium Silicate Phosphor for In Vitro Bioimaging.","authors":"Navya Sara Kuriyan, Ayswaria Deepti, Baby Chakrapani P S, Sabeena Mannilthodi","doi":"10.1021/acsabm.4c01779","DOIUrl":null,"url":null,"abstract":"<p><p>Eu<sup>3+</sup>-doped silicate phosphors are gaining significant attention for bioimaging and scaffold development due to their narrow red emission, high color purity, quantum yield (QY), and large Stokes shift. These phosphors offer several advantages over conventional imaging techniques, such as good selectivity and sensitivity, simpler operation, reduced data acquisition time, cost-effectiveness, and nondestructive imaging. The luminescence properties of these phosphors can be enhanced by modifying synthesis methods, annealing conditions, and hosts and introducing multiple dopants. This study explores a novel approach for improving luminescence by modifying the crystal structures of Eu<sup>3+</sup> doped calcium magnesium silicate (CMS:Eu<sup>3+</sup>) phosphors for in vitro bioimaging and potential scaffold development. The synthesized diopside (CaMgSi<sub>2</sub>O<sub>6</sub>:<i>x</i>Eu<sup>3+</sup>; <i>x</i> = 10, 15, and 20 mol %), merwinite (Ca<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>:15 mol % Eu<sup>3+</sup>), and akermanite (Ca<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub>:15 mol % Eu<sup>3+</sup>) phases of CMS:Eu<sup>3+</sup> exhibit distinct coordination environments for Eu<sup>3+</sup>, leading to unique excitation wavelength tunability from ultraviolet (UV) to the visible region, high emission intensity, decay time, QY > 40%, and color purity >83%. A comparative analysis of their structural and photoluminescence properties reveals the impact of phase modifications on luminescence for in vitro bioimaging by optimizing the dopant concentration. The results indicate that CaMgSi<sub>2</sub>O<sub>6</sub>: 15 mol % Eu<sup>3+</sup> is the most efficient phosphor for in vitro bioimaging, with the highest relative emission intensity in the red region, decay time ∼2 ms, QY ∼ 77%, and color purity ∼86%. The unique morphology of Ca<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>:15 mol %Eu<sup>3+</sup> and Ca<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub>:15 mol % Eu<sup>3+</sup> also supports cell adhesion, suggesting their potential in scaffold development. In brief, the study highlights the potential of CMS:Eu<sup>3+</sup> phosphors for in vitro bioimaging and scaffold development by modifying phases and dopant concentrations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Eu3+-doped silicate phosphors are gaining significant attention for bioimaging and scaffold development due to their narrow red emission, high color purity, quantum yield (QY), and large Stokes shift. These phosphors offer several advantages over conventional imaging techniques, such as good selectivity and sensitivity, simpler operation, reduced data acquisition time, cost-effectiveness, and nondestructive imaging. The luminescence properties of these phosphors can be enhanced by modifying synthesis methods, annealing conditions, and hosts and introducing multiple dopants. This study explores a novel approach for improving luminescence by modifying the crystal structures of Eu3+ doped calcium magnesium silicate (CMS:Eu3+) phosphors for in vitro bioimaging and potential scaffold development. The synthesized diopside (CaMgSi2O6:xEu3+; x = 10, 15, and 20 mol %), merwinite (Ca3MgSi2O8:15 mol % Eu3+), and akermanite (Ca2MgSi2O7:15 mol % Eu3+) phases of CMS:Eu3+ exhibit distinct coordination environments for Eu3+, leading to unique excitation wavelength tunability from ultraviolet (UV) to the visible region, high emission intensity, decay time, QY > 40%, and color purity >83%. A comparative analysis of their structural and photoluminescence properties reveals the impact of phase modifications on luminescence for in vitro bioimaging by optimizing the dopant concentration. The results indicate that CaMgSi2O6: 15 mol % Eu3+ is the most efficient phosphor for in vitro bioimaging, with the highest relative emission intensity in the red region, decay time ∼2 ms, QY ∼ 77%, and color purity ∼86%. The unique morphology of Ca3MgSi2O8:15 mol %Eu3+ and Ca2MgSi2O7:15 mol % Eu3+ also supports cell adhesion, suggesting their potential in scaffold development. In brief, the study highlights the potential of CMS:Eu3+ phosphors for in vitro bioimaging and scaffold development by modifying phases and dopant concentrations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
A Rhodamine-Based Ratiometric Fluorescent Sensor for Dual-Channel Visible and Near-Infrared Emission Detection of NAD(P)H in Living Cells and Fruit Fly Larvae. Amphiphilic Poly(ethylene glycol)-Cholesterol Conjugate: Stable Micellar Formulation for Efficient Loading and Effective Intracellular Delivery of Curcumin. Column Chromatography-Free Synthesis of Spirooxindole and Spiroindanone-Based Naphthalimides as Potent c-MYC G4 Stabilizers and HSA Binders for Elevating Anticancer Potential. Investigation to Understand the Role of Phase Variation in Red Emitting Eu3+-Doped Calcium Magnesium Silicate Phosphor for In Vitro Bioimaging. Magnetic Cell Separation Based on Protein Nanoparticles Mediating the Interaction between Magnetic Particles and Target Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1