Nick S Blunt, Laura Caune, Javiera Quiroz-Fernandez
{"title":"Quantum Computing Approach to Fixed-Node Monte Carlo Using Classical Shadows.","authors":"Nick S Blunt, Laura Caune, Javiera Quiroz-Fernandez","doi":"10.1021/acs.jctc.4c01468","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum Monte Carlo (QMC) methods are powerful approaches for solving electronic structure problems. Although they often provide high-accuracy solutions, the precision of most QMC methods is ultimately limited by the trial wave function that must be used. Recently, an approach has been demonstrated to allow the use of trial wave functions prepared on a quantum computer [Huggins et al., Unbiasing fermionic quantum Monte Carlo with a quantum computer. <i>Nature</i> 2022, <b>603,</b> 416] in the auxiliary-field QMC (AFQMC) method using classical shadows to estimate the required overlaps. However, this approach has an exponential post-processing step to construct these overlaps when performing classical shadows obtained using random Clifford circuits. Here, we study an approach to avoid this exponential scaling step by using a fixed-node Monte Carlo method based on full configuration interaction quantum Monte Carlo. This method is applied to the local unitary cluster Jastrow ansatz. We consider H<sub>4</sub>, ferrocene, and benzene molecules using up to 12 qubits as examples. Circuits are compiled to native gates for typical near-term architectures, and we assess the impact of circuit-level depolarizing noise on the method. We also provide a comparison of AFQMC and fixed-node approaches, demonstrating that AFQMC is more robust to errors, although extrapolations of the fixed-node energy reduce this discrepancy. Although the method can be used to reach chemical accuracy, the sampling cost to achieve this is high even for small active spaces, suggesting caution about the prospect of outperforming conventional QMC approaches.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01468","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum Monte Carlo (QMC) methods are powerful approaches for solving electronic structure problems. Although they often provide high-accuracy solutions, the precision of most QMC methods is ultimately limited by the trial wave function that must be used. Recently, an approach has been demonstrated to allow the use of trial wave functions prepared on a quantum computer [Huggins et al., Unbiasing fermionic quantum Monte Carlo with a quantum computer. Nature 2022, 603, 416] in the auxiliary-field QMC (AFQMC) method using classical shadows to estimate the required overlaps. However, this approach has an exponential post-processing step to construct these overlaps when performing classical shadows obtained using random Clifford circuits. Here, we study an approach to avoid this exponential scaling step by using a fixed-node Monte Carlo method based on full configuration interaction quantum Monte Carlo. This method is applied to the local unitary cluster Jastrow ansatz. We consider H4, ferrocene, and benzene molecules using up to 12 qubits as examples. Circuits are compiled to native gates for typical near-term architectures, and we assess the impact of circuit-level depolarizing noise on the method. We also provide a comparison of AFQMC and fixed-node approaches, demonstrating that AFQMC is more robust to errors, although extrapolations of the fixed-node energy reduce this discrepancy. Although the method can be used to reach chemical accuracy, the sampling cost to achieve this is high even for small active spaces, suggesting caution about the prospect of outperforming conventional QMC approaches.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.