{"title":"Stress-Free Two-Way Shape Memory Polymers with Dual-Crystalline Phase Based on Poly(Tetramethylene Ether Glycol) and Poly(ε-Caprolactone).","authors":"Bingyan Zhang, Jie Jiang, Jinjin Li, Shaoliang Lin, Ling Zhao, Zhenhao Xi, Weikang Yuan","doi":"10.1002/marc.202401102","DOIUrl":null,"url":null,"abstract":"<p><p>Two-way shape memory polymers (2W-SMPs) are a class of smart materials and can undergo spontaneously reversible deformation after specific stimuli. It is crucial to develop 2W-SMPs to achieve precise control of two-way shape memory behavior without external forces and reveal their structure-property relationships. In this study, dual-crystalline phase crosslinked polymer networks based on poly(tetramethylene ether glycol) (PTMEG) and poly(ε-caprolactone) (PCL) are fabricated via thiol-ene click reactions. The networks with two independent melting temperatures are gained by adjusting the ratio of the two segments and the two-way shape memory is enabled using the temperature difference between the two phases. The effects of network composition, pre-tensile strain, and actuation temperature on the two-way shape memory properties are investigated and the two-way shape memory mechanism of dual-crystalline phase polymers is further elucidated. Among the various compositions of networks, PTMEG<sup>8</sup>-PCL<sup>2</sup> exhibits the optimal two-way shape memory properties, with the actuation strain of 24.25% and reversible strain of up to 10.35% at the actuation temperature and pre-stretch strain of 45 °C and 15%, respectively, which is potential for soft robotics applications. It is believed that this work guides the design of semicrystalline networks with two-way shape memory properties.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401102"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401102","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Two-way shape memory polymers (2W-SMPs) are a class of smart materials and can undergo spontaneously reversible deformation after specific stimuli. It is crucial to develop 2W-SMPs to achieve precise control of two-way shape memory behavior without external forces and reveal their structure-property relationships. In this study, dual-crystalline phase crosslinked polymer networks based on poly(tetramethylene ether glycol) (PTMEG) and poly(ε-caprolactone) (PCL) are fabricated via thiol-ene click reactions. The networks with two independent melting temperatures are gained by adjusting the ratio of the two segments and the two-way shape memory is enabled using the temperature difference between the two phases. The effects of network composition, pre-tensile strain, and actuation temperature on the two-way shape memory properties are investigated and the two-way shape memory mechanism of dual-crystalline phase polymers is further elucidated. Among the various compositions of networks, PTMEG8-PCL2 exhibits the optimal two-way shape memory properties, with the actuation strain of 24.25% and reversible strain of up to 10.35% at the actuation temperature and pre-stretch strain of 45 °C and 15%, respectively, which is potential for soft robotics applications. It is believed that this work guides the design of semicrystalline networks with two-way shape memory properties.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.