Liver macrophage-derived exosomal miRNA-342-3p promotes liver fibrosis by inhibiting HPCAL1 in stellate cells.

IF 3.8 3区 医学 Q2 GENETICS & HEREDITY Human Genomics Pub Date : 2025-02-05 DOI:10.1186/s40246-025-00722-z
Wenshuai Li, Lirong Chen, Qi Zhou, Tiansheng Huang, Wanwei Zheng, Feifei Luo, Zhong Guang Luo, Jun Zhang, Jie Liu
{"title":"Liver macrophage-derived exosomal miRNA-342-3p promotes liver fibrosis by inhibiting HPCAL1 in stellate cells.","authors":"Wenshuai Li, Lirong Chen, Qi Zhou, Tiansheng Huang, Wanwei Zheng, Feifei Luo, Zhong Guang Luo, Jun Zhang, Jie Liu","doi":"10.1186/s40246-025-00722-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The progression of liver fibrosis involves complex interactions between hepatic stellate cells (HSCs) and multiple immune cells in the liver, including macrophages. However, the mechanism of exosomes in the crosstalk between liver macrophages and HSCs remains unclear.</p><p><strong>Method: </strong>Exosomes were extracted from primary mouse macrophages and cultured with HSCs, and the differential expression of microRNAs was evaluated using high-throughput sequencing technology. The functions of miR-342-3p in exosomes were verified by qPCR and luciferase reporter gene experiments with HSCs. The function of the target gene Hippocalcin-like protein 1 (HPCAL1) in HSCs was verified by Western blotting, qPCR, cellular immunofluorescence and co-IP in vivo and in vitro.</p><p><strong>Results: </strong>We demonstrated that exosomal microRNA-342-3p derived from primary liver macrophages could activate HSCs by inhibiting the expression of HPCAL1 in HSCs. HPCAL1, which is a fibrogenesis suppressor, could inhibit TGF-β signaling in HSCs by regulating the ubiquitination of Smad2 through direct interactions with its EF-hand 4 domain.</p><p><strong>Conclusion: </strong>This study reveals a previously unidentified profibrotic mechanism of crosstalk between macrophages and HSCs in the liver and suggests an attractive novel therapeutic strategy for treating fibroproliferative liver diseases.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"19 1","pages":"9"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-025-00722-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The progression of liver fibrosis involves complex interactions between hepatic stellate cells (HSCs) and multiple immune cells in the liver, including macrophages. However, the mechanism of exosomes in the crosstalk between liver macrophages and HSCs remains unclear.

Method: Exosomes were extracted from primary mouse macrophages and cultured with HSCs, and the differential expression of microRNAs was evaluated using high-throughput sequencing technology. The functions of miR-342-3p in exosomes were verified by qPCR and luciferase reporter gene experiments with HSCs. The function of the target gene Hippocalcin-like protein 1 (HPCAL1) in HSCs was verified by Western blotting, qPCR, cellular immunofluorescence and co-IP in vivo and in vitro.

Results: We demonstrated that exosomal microRNA-342-3p derived from primary liver macrophages could activate HSCs by inhibiting the expression of HPCAL1 in HSCs. HPCAL1, which is a fibrogenesis suppressor, could inhibit TGF-β signaling in HSCs by regulating the ubiquitination of Smad2 through direct interactions with its EF-hand 4 domain.

Conclusion: This study reveals a previously unidentified profibrotic mechanism of crosstalk between macrophages and HSCs in the liver and suggests an attractive novel therapeutic strategy for treating fibroproliferative liver diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Genomics
Human Genomics GENETICS & HEREDITY-
CiteScore
6.00
自引率
2.20%
发文量
55
审稿时长
11 weeks
期刊介绍: Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics. Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.
期刊最新文献
Sideroflexin family genes were dysregulated and associated with tumor progression in prostate cancers. Systematic analysis of the pharmacogenomics landscape towards clinical implementation of precision therapeutics in Greece. Liver macrophage-derived exosomal miRNA-342-3p promotes liver fibrosis by inhibiting HPCAL1 in stellate cells. Multi-omics approaches for understanding gene-environment interactions in noncommunicable diseases: techniques, translation, and equity issues. Genetic diversity of the immunoglobulin heavy chain locus in cohorts of patients affected with SARS-CoV-2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1