Buyang Huanwu decoction promotes gray and white matter remyelination by inhibiting Notch signaling activation in the astrocyte and microglia after ischemic stroke
Man-zhong Li , Yu-ming Zhuang , Ming-cong Li , Zi-yue Lin , Han-yu Wang , Jing-ting Jia , Lin Yang , De-chun Jiang , Hui Zhao
{"title":"Buyang Huanwu decoction promotes gray and white matter remyelination by inhibiting Notch signaling activation in the astrocyte and microglia after ischemic stroke","authors":"Man-zhong Li , Yu-ming Zhuang , Ming-cong Li , Zi-yue Lin , Han-yu Wang , Jing-ting Jia , Lin Yang , De-chun Jiang , Hui Zhao","doi":"10.1016/j.jep.2025.119440","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div>Ischemic stroke causes damages to both gray and white matter, resulting in long-term motor impairments. Myelin repair is a promising strategy for poststroke motor rehabilitation. Buyang Huanwu Decoction (BHD) is a classical traditional Chinese medicine formula for managing the sequelae of ischemic stroke. Whether BHD benefits gray and white matter remyelination following stroke remains to be elucidated.</div></div><div><h3>Aim of the study</h3><div>The present study aimed to investigate the effects of BHD on the gray and white matter remyelination following ischemic stroke and further explore the underlying mechanisms by combining magnetic resonance imaging (MRI) and histological experiments.</div></div><div><h3>Materials and methods</h3><div>The ischemic stroke model was established in male Sprague-Dawley rats by permanently occluding the middle cerebral artery (MCAO). BHD (16.6 g/kg and 8.3 g/kg) was intragastrically administered to rats for 30 days. The motor function was assessed by an automated Digi gait system. The structural integrity of the motor cortex and external capsule was monitored by MRI, including T2 mapping and diffusion tensor imaging (DTI). The remyelination was examined by Olig2/Ki67, 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase)/Ki67 double immunofluorescence staining and Luxol fast blue (LFB) staining. Subsequently, the Notch signaling activation in astrocytes and microglia was assessed by double immunofluorescence staining with JAG1/Notch1/Notch intracellular domain (NICD) and glial fibrillary acidic protein (GFAP)/ionized calcium binding adaptor molecule 1 (Iba1).</div></div><div><h3>Results</h3><div>BHD treatments remarkably improved motor function of the MCAO rats by reducing steps, swing time and ataxia coefficient of the left forelimb. The MRI examinations found that BHD treatments significantly reduced infarct volume and preserved the motor cortex and external capsule integrity, as reflected by decreased T2 values, RD, and increased FA. Notably, the gait parameters of the left forelimb were correlated to the MRI index obtained from the perilesional motor cortex and external capsule to varying degrees. Furthermore, BHD treatments enhanced gray and matter remyelination by elevating the numbers of Olig2<sup>+</sup>/Ki67<sup>+</sup>, CNPase<sup>+</sup>/Ki67<sup>+</sup> cells, and the integrated optical density of LFB. Finally, BHD effectively inhibited the activation of Notch signaling in the astrocytes and microglia of the corresponding gray and white matter, as evidenced by decreased numbers of cells co-expressing JAG1/Notch1/NICD and GFAP/Iba1.</div></div><div><h3>Conclusion</h3><div>This study demonstrated that BHD treatment could promote poststroke motor recovery by preserving the structural integrity of the gray and white matter and facilitating their remyelination. Notably, the pro-remyelination effects of BHD treatment might be attributed to suppressed activation of Notch signaling within the reactive astrocytes and microglia.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"343 ","pages":"Article 119440"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874125001230","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethnopharmacological relevance
Ischemic stroke causes damages to both gray and white matter, resulting in long-term motor impairments. Myelin repair is a promising strategy for poststroke motor rehabilitation. Buyang Huanwu Decoction (BHD) is a classical traditional Chinese medicine formula for managing the sequelae of ischemic stroke. Whether BHD benefits gray and white matter remyelination following stroke remains to be elucidated.
Aim of the study
The present study aimed to investigate the effects of BHD on the gray and white matter remyelination following ischemic stroke and further explore the underlying mechanisms by combining magnetic resonance imaging (MRI) and histological experiments.
Materials and methods
The ischemic stroke model was established in male Sprague-Dawley rats by permanently occluding the middle cerebral artery (MCAO). BHD (16.6 g/kg and 8.3 g/kg) was intragastrically administered to rats for 30 days. The motor function was assessed by an automated Digi gait system. The structural integrity of the motor cortex and external capsule was monitored by MRI, including T2 mapping and diffusion tensor imaging (DTI). The remyelination was examined by Olig2/Ki67, 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase)/Ki67 double immunofluorescence staining and Luxol fast blue (LFB) staining. Subsequently, the Notch signaling activation in astrocytes and microglia was assessed by double immunofluorescence staining with JAG1/Notch1/Notch intracellular domain (NICD) and glial fibrillary acidic protein (GFAP)/ionized calcium binding adaptor molecule 1 (Iba1).
Results
BHD treatments remarkably improved motor function of the MCAO rats by reducing steps, swing time and ataxia coefficient of the left forelimb. The MRI examinations found that BHD treatments significantly reduced infarct volume and preserved the motor cortex and external capsule integrity, as reflected by decreased T2 values, RD, and increased FA. Notably, the gait parameters of the left forelimb were correlated to the MRI index obtained from the perilesional motor cortex and external capsule to varying degrees. Furthermore, BHD treatments enhanced gray and matter remyelination by elevating the numbers of Olig2+/Ki67+, CNPase+/Ki67+ cells, and the integrated optical density of LFB. Finally, BHD effectively inhibited the activation of Notch signaling in the astrocytes and microglia of the corresponding gray and white matter, as evidenced by decreased numbers of cells co-expressing JAG1/Notch1/NICD and GFAP/Iba1.
Conclusion
This study demonstrated that BHD treatment could promote poststroke motor recovery by preserving the structural integrity of the gray and white matter and facilitating their remyelination. Notably, the pro-remyelination effects of BHD treatment might be attributed to suppressed activation of Notch signaling within the reactive astrocytes and microglia.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.