Yan Chen , Yan Zhu , Zihu Tan , Xueyi Zhang , Jiafeng Hu , Ruichi Zhu , Minjie Xie , Jing Wang , Lizhu Chen , Zhenli Guo
{"title":"Jiajian Shuyu pills effectively ameliorate cognitive impairment via regulating the inflammation of microglia in an Alzheimer's disease mouse model","authors":"Yan Chen , Yan Zhu , Zihu Tan , Xueyi Zhang , Jiafeng Hu , Ruichi Zhu , Minjie Xie , Jing Wang , Lizhu Chen , Zhenli Guo","doi":"10.1016/j.jep.2025.119508","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive cognitive decline and behavioral impairments in the elderly. Microglia, the resident immune cells of the central nervous system, play a crucial role in modulating the pathological processes associated with AD. Jiajian Shuyu Pills (JJSYP) are frequently employed in the treatment of AD, purportedly by enhancing the physiological functions of human tissues and organs to modulate the immune response. Nevertheless, the underlying mechanisms by which JJSYP exert their therapeutic effects in the context of AD remain inadequately elucidated.</div></div><div><h3>Aim of the study</h3><div>This study aimed to assess the effects of JJSYP on cognitive enhancement and the alleviation of neuroinflammation in the treatment of AD, as well as to explore the underlying mechanisms using mouse models.</div></div><div><h3>Materials and methods</h3><div>The components of JJSYP in serum were analyzed using HPLC-Q/TOF-MS. APP/PS1 transgenic mice served as AD models in this investigation. Cognitive function in the AD mice was assessed through the Mirror Water Maze Test and the Novel Object Recognition Test. The quantification of apoptotic hippocampal cells was conducted using Nissl staining and TUNEL staining. Immunofluorescence (IF) and Western blot (WB) analyses were employed to examine microglial activation and the expression of relevant proteins. Transcriptomic sequencing analysis and network pharmacology were administrated to explore the potential mechanisms of JJSYP in AD treatment. Inflammatory cytokine levels in the brain were measured using RT-PCR.</div></div><div><h3>Results</h3><div>A total of 74 absorbed prototype components from JJSYP were identified. JJSYP effectively improved cognitive function and neuroapoptosis in AD model mice by modulating the activation of microglia. The JJSYP intervention alleviated neuroinflammation by suppressing microglial activation and reducing the accumulation of amyloid β-protein. Through transcriptome sequencing and WB verification, 34 differentially expressed genes (DEGs) were identified, including ACKR3, NR1H3 and Adra1a. Following treatment with a high dose of JJSYP, both ACKR3 and NR1H3 showed a significant decrease compared to the model group. Conversely, ADRA1A expression was reduced in model group compared to the control group, but increased following high dose JJSYP treatment. Research involving RNA sequencing and network pharmacology indicated that JJSYP altered the activation of CXCL12/ACKR3 signaling pathways in the hippocampus.</div></div><div><h3>Conclusions</h3><div>JJSYP exhibits potential anti-Alzheimer's Disease effects and warrants further investigation and development as a prosper treatment for AD.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"343 ","pages":"Article 119508"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874125001928","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethnopharmacological relevance
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive cognitive decline and behavioral impairments in the elderly. Microglia, the resident immune cells of the central nervous system, play a crucial role in modulating the pathological processes associated with AD. Jiajian Shuyu Pills (JJSYP) are frequently employed in the treatment of AD, purportedly by enhancing the physiological functions of human tissues and organs to modulate the immune response. Nevertheless, the underlying mechanisms by which JJSYP exert their therapeutic effects in the context of AD remain inadequately elucidated.
Aim of the study
This study aimed to assess the effects of JJSYP on cognitive enhancement and the alleviation of neuroinflammation in the treatment of AD, as well as to explore the underlying mechanisms using mouse models.
Materials and methods
The components of JJSYP in serum were analyzed using HPLC-Q/TOF-MS. APP/PS1 transgenic mice served as AD models in this investigation. Cognitive function in the AD mice was assessed through the Mirror Water Maze Test and the Novel Object Recognition Test. The quantification of apoptotic hippocampal cells was conducted using Nissl staining and TUNEL staining. Immunofluorescence (IF) and Western blot (WB) analyses were employed to examine microglial activation and the expression of relevant proteins. Transcriptomic sequencing analysis and network pharmacology were administrated to explore the potential mechanisms of JJSYP in AD treatment. Inflammatory cytokine levels in the brain were measured using RT-PCR.
Results
A total of 74 absorbed prototype components from JJSYP were identified. JJSYP effectively improved cognitive function and neuroapoptosis in AD model mice by modulating the activation of microglia. The JJSYP intervention alleviated neuroinflammation by suppressing microglial activation and reducing the accumulation of amyloid β-protein. Through transcriptome sequencing and WB verification, 34 differentially expressed genes (DEGs) were identified, including ACKR3, NR1H3 and Adra1a. Following treatment with a high dose of JJSYP, both ACKR3 and NR1H3 showed a significant decrease compared to the model group. Conversely, ADRA1A expression was reduced in model group compared to the control group, but increased following high dose JJSYP treatment. Research involving RNA sequencing and network pharmacology indicated that JJSYP altered the activation of CXCL12/ACKR3 signaling pathways in the hippocampus.
Conclusions
JJSYP exhibits potential anti-Alzheimer's Disease effects and warrants further investigation and development as a prosper treatment for AD.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.