Jiajian Shuyu pills effectively ameliorate cognitive impairment via regulating the inflammation of microglia in an Alzheimer's disease mouse model

IF 4.8 2区 医学 Q1 CHEMISTRY, MEDICINAL Journal of ethnopharmacology Pub Date : 2025-02-17 DOI:10.1016/j.jep.2025.119508
Yan Chen , Yan Zhu , Zihu Tan , Xueyi Zhang , Jiafeng Hu , Ruichi Zhu , Minjie Xie , Jing Wang , Lizhu Chen , Zhenli Guo
{"title":"Jiajian Shuyu pills effectively ameliorate cognitive impairment via regulating the inflammation of microglia in an Alzheimer's disease mouse model","authors":"Yan Chen ,&nbsp;Yan Zhu ,&nbsp;Zihu Tan ,&nbsp;Xueyi Zhang ,&nbsp;Jiafeng Hu ,&nbsp;Ruichi Zhu ,&nbsp;Minjie Xie ,&nbsp;Jing Wang ,&nbsp;Lizhu Chen ,&nbsp;Zhenli Guo","doi":"10.1016/j.jep.2025.119508","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive cognitive decline and behavioral impairments in the elderly. Microglia, the resident immune cells of the central nervous system, play a crucial role in modulating the pathological processes associated with AD. Jiajian Shuyu Pills (JJSYP) are frequently employed in the treatment of AD, purportedly by enhancing the physiological functions of human tissues and organs to modulate the immune response. Nevertheless, the underlying mechanisms by which JJSYP exert their therapeutic effects in the context of AD remain inadequately elucidated.</div></div><div><h3>Aim of the study</h3><div>This study aimed to assess the effects of JJSYP on cognitive enhancement and the alleviation of neuroinflammation in the treatment of AD, as well as to explore the underlying mechanisms using mouse models.</div></div><div><h3>Materials and methods</h3><div>The components of JJSYP in serum were analyzed using HPLC-Q/TOF-MS. APP/PS1 transgenic mice served as AD models in this investigation. Cognitive function in the AD mice was assessed through the Mirror Water Maze Test and the Novel Object Recognition Test. The quantification of apoptotic hippocampal cells was conducted using Nissl staining and TUNEL staining. Immunofluorescence (IF) and Western blot (WB) analyses were employed to examine microglial activation and the expression of relevant proteins. Transcriptomic sequencing analysis and network pharmacology were administrated to explore the potential mechanisms of JJSYP in AD treatment. Inflammatory cytokine levels in the brain were measured using RT-PCR.</div></div><div><h3>Results</h3><div>A total of 74 absorbed prototype components from JJSYP were identified. JJSYP effectively improved cognitive function and neuroapoptosis in AD model mice by modulating the activation of microglia. The JJSYP intervention alleviated neuroinflammation by suppressing microglial activation and reducing the accumulation of amyloid β-protein. Through transcriptome sequencing and WB verification, 34 differentially expressed genes (DEGs) were identified, including ACKR3, NR1H3 and Adra1a. Following treatment with a high dose of JJSYP, both ACKR3 and NR1H3 showed a significant decrease compared to the model group. Conversely, ADRA1A expression was reduced in model group compared to the control group, but increased following high dose JJSYP treatment. Research involving RNA sequencing and network pharmacology indicated that JJSYP altered the activation of CXCL12/ACKR3 signaling pathways in the hippocampus.</div></div><div><h3>Conclusions</h3><div>JJSYP exhibits potential anti-Alzheimer's Disease effects and warrants further investigation and development as a prosper treatment for AD.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"343 ","pages":"Article 119508"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874125001928","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ethnopharmacological relevance

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive cognitive decline and behavioral impairments in the elderly. Microglia, the resident immune cells of the central nervous system, play a crucial role in modulating the pathological processes associated with AD. Jiajian Shuyu Pills (JJSYP) are frequently employed in the treatment of AD, purportedly by enhancing the physiological functions of human tissues and organs to modulate the immune response. Nevertheless, the underlying mechanisms by which JJSYP exert their therapeutic effects in the context of AD remain inadequately elucidated.

Aim of the study

This study aimed to assess the effects of JJSYP on cognitive enhancement and the alleviation of neuroinflammation in the treatment of AD, as well as to explore the underlying mechanisms using mouse models.

Materials and methods

The components of JJSYP in serum were analyzed using HPLC-Q/TOF-MS. APP/PS1 transgenic mice served as AD models in this investigation. Cognitive function in the AD mice was assessed through the Mirror Water Maze Test and the Novel Object Recognition Test. The quantification of apoptotic hippocampal cells was conducted using Nissl staining and TUNEL staining. Immunofluorescence (IF) and Western blot (WB) analyses were employed to examine microglial activation and the expression of relevant proteins. Transcriptomic sequencing analysis and network pharmacology were administrated to explore the potential mechanisms of JJSYP in AD treatment. Inflammatory cytokine levels in the brain were measured using RT-PCR.

Results

A total of 74 absorbed prototype components from JJSYP were identified. JJSYP effectively improved cognitive function and neuroapoptosis in AD model mice by modulating the activation of microglia. The JJSYP intervention alleviated neuroinflammation by suppressing microglial activation and reducing the accumulation of amyloid β-protein. Through transcriptome sequencing and WB verification, 34 differentially expressed genes (DEGs) were identified, including ACKR3, NR1H3 and Adra1a. Following treatment with a high dose of JJSYP, both ACKR3 and NR1H3 showed a significant decrease compared to the model group. Conversely, ADRA1A expression was reduced in model group compared to the control group, but increased following high dose JJSYP treatment. Research involving RNA sequencing and network pharmacology indicated that JJSYP altered the activation of CXCL12/ACKR3 signaling pathways in the hippocampus.

Conclusions

JJSYP exhibits potential anti-Alzheimer's Disease effects and warrants further investigation and development as a prosper treatment for AD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of ethnopharmacology
Journal of ethnopharmacology 医学-全科医学与补充医学
CiteScore
10.30
自引率
5.60%
发文量
967
审稿时长
77 days
期刊介绍: The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.
期刊最新文献
Jiajian Shuyu pills effectively ameliorate cognitive impairment via regulating the inflammation of microglia in an Alzheimer's disease mouse model Corrigendum to "Study on the action mechanism of the peptide compounds of Wuguchong on diabetic ulcers, based on UHPLC-Q-TOF-MS, network pharmacology and experimental validation" [J. Ethnopharmacol. 288 (2022) 114974]. Integrating metabolomics and network pharmacology to explore the mechanism of Xiangshao Sanjie Oral Liquid in treating rats with mammary gland hyperplasia Multi-tissue metabolomics and network pharmacology study on the intervention of Danggui Buxue Decoction in mice with gemcitabine induced myelosuppression Manshenkang granules alleviate fibrosis in chronic renal failure rats by regulating the PDE4b/cAMP pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1