Association between the functional brain network and antidepressant responsiveness in patients with major depressive disorders: a resting-state EEG study.
{"title":"Association between the functional brain network and antidepressant responsiveness in patients with major depressive disorders: a resting-state EEG study.","authors":"Kang-Min Choi, Hyeon-Ho Hwang, Chaeyeon Yang, Bori Jung, Chang-Hwan Im, Seung-Hwan Lee","doi":"10.1017/S0033291724003477","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent neuroimaging studies have demonstrated that the heterogeneous antidepressant responsiveness in patients with major depressive disorder (MDD) is associated with diverse resting-state functional brain network (rsFBN) topology; however, only limited studies have explored the rsFBN using electroencephalography (EEG). In this study, we aimed to identify EEG-derived rsFBN-based biomarkers to predict pharmacotherapeutic responsiveness.</p><p><strong>Methods: </strong>The resting-state EEG signals were acquired for demography-matched three groups: 98 patients with treatment-refractory MDD (trMDD), 269 those with good-responding MDD (grMDD), and 131 healthy controls (HCs). The source-level rsFBN was constructed using 31 sources as nodes and beta-band power envelope correlation (PEC) as edges. The degree centrality (DC) and clustering coefficients (CCs) were calculated for various sparsity levels. Network-based statistic and one-way analysis of variance models were employed for comparing PECs and network indices, respectively. The multiple comparisons were controlled by the false discovery rate.</p><p><strong>Results: </strong>Patients with trMDD were characterized by the altered dorsal attention network and salience network. Specifically, they exhibited hypoconnection between eye fields and right parietal regions (<i>p</i> = 0.0088), decreased DC in the right supramarginal gyrus (<i>q</i> = 0.0057), and decreased CC in the reward circuit (<i>q</i>s < 0.05). On the other hand, both MDD groups shared increased DC but decreased CC in the posterior cingulate cortex.</p><p><strong>Conclusions: </strong>We confirmed that network topology was more severely deteriorated in patients with trMDD, particularly for the attention-regulatory networks. Our findings suggested that the altered rsFBN topologies could serve as potential pathologically interpretable biomarkers for predicting antidepressant responsiveness.</p>","PeriodicalId":20891,"journal":{"name":"Psychological Medicine","volume":"55 ","pages":"e25"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0033291724003477","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Recent neuroimaging studies have demonstrated that the heterogeneous antidepressant responsiveness in patients with major depressive disorder (MDD) is associated with diverse resting-state functional brain network (rsFBN) topology; however, only limited studies have explored the rsFBN using electroencephalography (EEG). In this study, we aimed to identify EEG-derived rsFBN-based biomarkers to predict pharmacotherapeutic responsiveness.
Methods: The resting-state EEG signals were acquired for demography-matched three groups: 98 patients with treatment-refractory MDD (trMDD), 269 those with good-responding MDD (grMDD), and 131 healthy controls (HCs). The source-level rsFBN was constructed using 31 sources as nodes and beta-band power envelope correlation (PEC) as edges. The degree centrality (DC) and clustering coefficients (CCs) were calculated for various sparsity levels. Network-based statistic and one-way analysis of variance models were employed for comparing PECs and network indices, respectively. The multiple comparisons were controlled by the false discovery rate.
Results: Patients with trMDD were characterized by the altered dorsal attention network and salience network. Specifically, they exhibited hypoconnection between eye fields and right parietal regions (p = 0.0088), decreased DC in the right supramarginal gyrus (q = 0.0057), and decreased CC in the reward circuit (qs < 0.05). On the other hand, both MDD groups shared increased DC but decreased CC in the posterior cingulate cortex.
Conclusions: We confirmed that network topology was more severely deteriorated in patients with trMDD, particularly for the attention-regulatory networks. Our findings suggested that the altered rsFBN topologies could serve as potential pathologically interpretable biomarkers for predicting antidepressant responsiveness.
期刊介绍:
Now in its fifth decade of publication, Psychological Medicine is a leading international journal in the fields of psychiatry, related aspects of psychology and basic sciences. From 2014, there are 16 issues a year, each featuring original articles reporting key research being undertaken worldwide, together with shorter editorials by distinguished scholars and an important book review section. The journal''s success is clearly demonstrated by a consistently high impact factor.