{"title":"Engineered ultra-wide bandgap Sm<sub>2</sub>O<sub>3</sub>/MWCNT nanocomposites for deep-ultra violet photodetectors.","authors":"Afsal Sharaf, Shantikumar Nair, Laxman Raju Thoutam","doi":"10.1088/1361-6528/adab7d","DOIUrl":null,"url":null,"abstract":"<p><p>The current work focuses on the synthesis and control of cubic vs monoclinic phase structures of Sm<sub>2</sub>O<sub>3</sub>via., cost-effective solution-based sol-gel technique. The structural analysis of the as-synthesized Sm<sub>2</sub>O<sub>3</sub>powder reveals the phase-change from initial mixture of cubic and monoclinic phases (82:18) to almost cubic phase (96:4), with increase of polyethylene glycol 600 additive from 2% to 25% respectively. The dark-current of the films made from as-synthesized Sm<sub>2</sub>O<sub>3</sub>powder revealed no measurable current, indicates its high defect tolerance against growth conditions. The multi-walled carbon nanotubes (MWCNT) are added as conducting scaffold into Sm<sub>2</sub>O<sub>3</sub>insulating matrix, to facilitate carrier transport for light-generated carriers, upon UV exposure. The dark-current of the photodetectors increased from nano-ampere to milli-ampere range with increase in MWCNT weight concentration from 1% to 10% respectively. A nominal photo-to-dark current ratio (PDCR) of around 2 is observed for different MWCNT concentrations in Sm<sub>2</sub>O<sub>3</sub>on glass substrates, upon UV light exposure. The PDCR is further increased to a maximum of 5.6 with the increase in grain-structure of Sm<sub>2</sub>O<sub>3</sub>within the nanocomposite via., substrate-engineering. The observed PDCR of 5.6 is the first reported value (to the best of our knowledge) for Sm<sub>2</sub>O<sub>3</sub>-based nanocomposite material towards deep-UV photodetector applications. The experimental results suggest incorporation of conductive nanocomposites into ultra-wide bandgap oxide semiconductor materials seems to be a feasible and promising approach for the design of future cost-effective deep-UV photodetectors.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"36 13","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adab7d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The current work focuses on the synthesis and control of cubic vs monoclinic phase structures of Sm2O3via., cost-effective solution-based sol-gel technique. The structural analysis of the as-synthesized Sm2O3powder reveals the phase-change from initial mixture of cubic and monoclinic phases (82:18) to almost cubic phase (96:4), with increase of polyethylene glycol 600 additive from 2% to 25% respectively. The dark-current of the films made from as-synthesized Sm2O3powder revealed no measurable current, indicates its high defect tolerance against growth conditions. The multi-walled carbon nanotubes (MWCNT) are added as conducting scaffold into Sm2O3insulating matrix, to facilitate carrier transport for light-generated carriers, upon UV exposure. The dark-current of the photodetectors increased from nano-ampere to milli-ampere range with increase in MWCNT weight concentration from 1% to 10% respectively. A nominal photo-to-dark current ratio (PDCR) of around 2 is observed for different MWCNT concentrations in Sm2O3on glass substrates, upon UV light exposure. The PDCR is further increased to a maximum of 5.6 with the increase in grain-structure of Sm2O3within the nanocomposite via., substrate-engineering. The observed PDCR of 5.6 is the first reported value (to the best of our knowledge) for Sm2O3-based nanocomposite material towards deep-UV photodetector applications. The experimental results suggest incorporation of conductive nanocomposites into ultra-wide bandgap oxide semiconductor materials seems to be a feasible and promising approach for the design of future cost-effective deep-UV photodetectors.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.