Leonid A Shelukhin, Anna V Kuzikova, Andrey V Telegin, Vladimir D Bessonov, Alexey V Ognev, Alexander S Samardak, Junho Park, Young Keun Kim, Alexandra M Kalashnikova
{"title":"Enhanced laser-induced single-cycle terahertz generation in a spintronic emitter with a gradient interface.","authors":"Leonid A Shelukhin, Anna V Kuzikova, Andrey V Telegin, Vladimir D Bessonov, Alexey V Ognev, Alexander S Samardak, Junho Park, Young Keun Kim, Alexandra M Kalashnikova","doi":"10.1080/14686996.2024.2448417","DOIUrl":null,"url":null,"abstract":"<p><p>The development of spintronic emitters of broadband terahertz (THz) pulses relies on designing heterostructures in which the processes of laser-driven spin current generation and subsequent spin-to-charge current conversion are the most efficient. The interface between the ferromagnetic and nonmagnetic layers in an emitter is a critical element. In this study, we experimentally examined single-cycle THz pulse generation from a laser-pulse-excited Pt/Co emitter with a 1.2-nm-thick composition-gradient interface between the Pt and Co and compared it with the emission from a conventional Pt/Co structure with an abrupt interface. We found that the gradient interface improved the efficiency of the optics-to-THz conversion by a factor of two in a wide range of optical fluences up to 3 mJ⋅cm<sup>-2</sup>. This enhancement was caused by a pronounced increase in the transmittance of the laser-driven spin-polarized current through the gradient interface compared with the abrupt interface. Moreover, it was evident that such transmission deteriorated with the laser fluence owing to the spin accumulation effect.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2448417"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795755/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2448417","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of spintronic emitters of broadband terahertz (THz) pulses relies on designing heterostructures in which the processes of laser-driven spin current generation and subsequent spin-to-charge current conversion are the most efficient. The interface between the ferromagnetic and nonmagnetic layers in an emitter is a critical element. In this study, we experimentally examined single-cycle THz pulse generation from a laser-pulse-excited Pt/Co emitter with a 1.2-nm-thick composition-gradient interface between the Pt and Co and compared it with the emission from a conventional Pt/Co structure with an abrupt interface. We found that the gradient interface improved the efficiency of the optics-to-THz conversion by a factor of two in a wide range of optical fluences up to 3 mJ⋅cm-2. This enhancement was caused by a pronounced increase in the transmittance of the laser-driven spin-polarized current through the gradient interface compared with the abrupt interface. Moreover, it was evident that such transmission deteriorated with the laser fluence owing to the spin accumulation effect.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.