{"title":"Interplay between vacancy-induced hydrogen segregation and stress-induced vacancy redistribution causing embrittlement of alpha-iron.","authors":"Mugilgeethan Vijendran, Ryosuke Matsumoto","doi":"10.1080/14686996.2025.2459060","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a novel mechanism of intergranular fracture in alpha-iron, focusing on the effects of trapped vacancies, H atoms, and their synergistic interplay under tensile strain. We present a methodology for the introduction of H into grain boundaries (GBs) resulting in a realistic distribution by considering H-H interactions. Accordingly, optimal H concentrations were determined under specific environmental conditions for GBs with and without vacancy-induced segregation under zero and 2% tensile strain, respectively. Subsequently, the reduction in cohesive energy at GBs was evaluated at the optimal H concentration under these conditions. In the case of H segregation without vacancies at zero applied strain, the reduction in the cohesive energy ranged approximately from 15% to 35% for all the GB configurations. Eventually, vacancy segregation increased H concentration at the GBs, defined as vacancy-induced H segregation. The vacancy-induced H segregation resulted in a 60-117% increase in H concentration and a 70-80% decrease in cohesive energy at a vacancy concentration of <math><mn>7.49</mn> <mrow><mrow><mi> </mi></mrow> </mrow> <mn>1</mn> <mrow><mo>/</mo></mrow> <mrow><mrow><mi>n</mi></mrow> </mrow> <mrow> <msup> <mrow><mrow><mi>m</mi></mrow> </mrow> <mn>2</mn></msup> </mrow> </math> under zero applied strain. The proposed vacancy-induced H-segregation mechanism explained the delayed fracture in steel. Furthermore, the effect of tensile strain on embrittlement was elucidated, with strain-induced vacancy redistribution and vacancy-induced H segregation synergistically promoting GB decohesion, resulting in a 73-93% reduction in cohesive energy at the same vacancy concentration.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2459060"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2459060","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel mechanism of intergranular fracture in alpha-iron, focusing on the effects of trapped vacancies, H atoms, and their synergistic interplay under tensile strain. We present a methodology for the introduction of H into grain boundaries (GBs) resulting in a realistic distribution by considering H-H interactions. Accordingly, optimal H concentrations were determined under specific environmental conditions for GBs with and without vacancy-induced segregation under zero and 2% tensile strain, respectively. Subsequently, the reduction in cohesive energy at GBs was evaluated at the optimal H concentration under these conditions. In the case of H segregation without vacancies at zero applied strain, the reduction in the cohesive energy ranged approximately from 15% to 35% for all the GB configurations. Eventually, vacancy segregation increased H concentration at the GBs, defined as vacancy-induced H segregation. The vacancy-induced H segregation resulted in a 60-117% increase in H concentration and a 70-80% decrease in cohesive energy at a vacancy concentration of under zero applied strain. The proposed vacancy-induced H-segregation mechanism explained the delayed fracture in steel. Furthermore, the effect of tensile strain on embrittlement was elucidated, with strain-induced vacancy redistribution and vacancy-induced H segregation synergistically promoting GB decohesion, resulting in a 73-93% reduction in cohesive energy at the same vacancy concentration.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.