The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion.

Q1 Medicine Pathogens and Immunity Pub Date : 2025-01-29 eCollection Date: 2024-01-01 DOI:10.20411/pai.v10i1.770
Maja Reimann, Korkut Avsar, Andrew R DiNardo, Torsten Goldmann, Gunar Günther, Michael Hoelscher, Elmira Ibraim, Barbara Kalsdorf, Stefan H E Kaufmann, Niklas Köhler, Anna M Mandalakas, Florian P Maurer, Marius Müller, Dörte Nitschkowski, Ioana D Olaru, Cristina Popa, Andrea Rachow, Thierry Rolling, Helmut J F Salzer, Patricia Sanchez-Carballo, Maren Schuhmann, Dagmar Schaub, Victor Spinu, Elena Terhalle, Markus Unnewehr, Nika J Zielinski, Jan Heyckendorf, Christoph Lange
{"title":"The TB27 Transcriptomic Model for Predicting <i>Mycobacterium tuberculosis</i> Culture Conversion.","authors":"Maja Reimann, Korkut Avsar, Andrew R DiNardo, Torsten Goldmann, Gunar Günther, Michael Hoelscher, Elmira Ibraim, Barbara Kalsdorf, Stefan H E Kaufmann, Niklas Köhler, Anna M Mandalakas, Florian P Maurer, Marius Müller, Dörte Nitschkowski, Ioana D Olaru, Cristina Popa, Andrea Rachow, Thierry Rolling, Helmut J F Salzer, Patricia Sanchez-Carballo, Maren Schuhmann, Dagmar Schaub, Victor Spinu, Elena Terhalle, Markus Unnewehr, Nika J Zielinski, Jan Heyckendorf, Christoph Lange","doi":"10.20411/pai.v10i1.770","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of <i>Mycobacterium tuberculosis</i>. Recently, host RNA signatures have been used to monitor the response to tuberculosis treatment.</p><p><strong>Objective: </strong>Identifying and validating a whole blood-based RNA signature model to predict microbiological treatment responses in patients on tuberculosis therapy.</p><p><strong>Methods: </strong>Using a multi-step machine learning algorithm to identify an RNA-based algorithm to predict the remaining time to culture conversion at flexible time points during anti-tuberculosis therapy.</p><p><strong>Results: </strong>The identification cohort included 149 patients split into a training and a test cohort, to develop a multistep algorithm consisting of 27 genes (TB27) for predicting the remaining time to culture conversion (TCC) at any given time. In the test dataset, predicted TCC and observed TCC achieved a correlation coefficient of <i>r</i>=0.98. An external validation cohort of 34 patients shows a correlation between predicted and observed days to TCC also of <i>r</i>=0.98.</p><p><strong>Conclusion: </strong>We identified and validated a whole blood-based RNA signature (TB27) that demonstrates an excellent agreement between predicted and observed times to <i>M. tuberculosis</i> culture conversion during tuberculosis therapy. TB27 is a potential useful biomarker for anti-tuberculosis drug development and for prediction of treatment responses in clinical practice.</p>","PeriodicalId":36419,"journal":{"name":"Pathogens and Immunity","volume":"10 1","pages":"120-139"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and Immunity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20411/pai.v10i1.770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale: Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of Mycobacterium tuberculosis. Recently, host RNA signatures have been used to monitor the response to tuberculosis treatment.

Objective: Identifying and validating a whole blood-based RNA signature model to predict microbiological treatment responses in patients on tuberculosis therapy.

Methods: Using a multi-step machine learning algorithm to identify an RNA-based algorithm to predict the remaining time to culture conversion at flexible time points during anti-tuberculosis therapy.

Results: The identification cohort included 149 patients split into a training and a test cohort, to develop a multistep algorithm consisting of 27 genes (TB27) for predicting the remaining time to culture conversion (TCC) at any given time. In the test dataset, predicted TCC and observed TCC achieved a correlation coefficient of r=0.98. An external validation cohort of 34 patients shows a correlation between predicted and observed days to TCC also of r=0.98.

Conclusion: We identified and validated a whole blood-based RNA signature (TB27) that demonstrates an excellent agreement between predicted and observed times to M. tuberculosis culture conversion during tuberculosis therapy. TB27 is a potential useful biomarker for anti-tuberculosis drug development and for prediction of treatment responses in clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pathogens and Immunity
Pathogens and Immunity Medicine-Infectious Diseases
CiteScore
10.60
自引率
0.00%
发文量
16
审稿时长
10 weeks
期刊最新文献
The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion. Hypervirulent Klebsiella pneumoniae (hvKp): Overview, Epidemiology, and Laboratory Detection. Increased Chemokine Production is a Hallmark of Rhesus Macaque Natural Killer Cells Mediating Robust Anti-HIV Envelope-Specific Antibody-Dependent Cell-Mediated Cytotoxicity. Inflammation and Microbial Translocation Correlate with Reduced MAIT Cells in People with HIV. Historical Highlight: The Luria-Delbrück Fluctuation Test - A Study of the Nature of Bacterial Mutations Conferring Resistance to Infection by Bacteriophage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1