Capturing Requirements for a Data Annotation Tool for Intensive Care: Experimental User-Centered Design Study.

IF 2.6 Q2 HEALTH CARE SCIENCES & SERVICES JMIR Human Factors Pub Date : 2025-02-05 DOI:10.2196/56880
Marceli Wac, Raul Santos-Rodriguez, Chris McWilliams, Christopher Bourdeaux
{"title":"Capturing Requirements for a Data Annotation Tool for Intensive Care: Experimental User-Centered Design Study.","authors":"Marceli Wac, Raul Santos-Rodriguez, Chris McWilliams, Christopher Bourdeaux","doi":"10.2196/56880","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Increasing use of computational methods in health care provides opportunities to address previously unsolvable problems. Machine learning techniques applied to routinely collected data can enhance clinical tools and improve patient outcomes, but their effective deployment comes with significant challenges. While some tasks can be addressed by training machine learning models directly on the collected data, more complex problems require additional input in the form of data annotations. Data annotation is a complex and time-consuming problem that requires domain expertise and frequently, technical proficiency. With clinicians' time being an extremely limited resource, existing tools fail to provide an effective workflow for deployment in health care.</p><p><strong>Objective: </strong>This paper investigates the approach of intensive care unit staff to the task of data annotation. Specifically, it aims to (1) understand how clinicians approach data annotation and (2) capture the requirements for a digital annotation tool for the health care setting.</p><p><strong>Methods: </strong>We conducted an experimental activity involving annotation of the printed excerpts of real time-series admission data with 7 intensive care unit clinicians. Each participant annotated an identical set of admissions with the periods of weaning from mechanical ventilation during a single 45-minute workshop. Participants were observed during task completion and their actions were analyzed within Norman's Interaction Cycle model to identify the software requirements.</p><p><strong>Results: </strong>Clinicians followed a cyclic process of investigation, annotation, data reevaluation, and label refinement. Variety of techniques were used to investigate data and create annotations. We identified 11 requirements for the digital tool across 4 domains: annotation of individual admissions (n=5), semiautomated annotation (n=3), operational constraints (n=2), and use of labels in machine learning (n=1).</p><p><strong>Conclusions: </strong>Effective data annotation in a clinical setting relies on flexibility in analysis and label creation and workflow continuity across multiple admissions. There is a need to ensure a seamless transition between data investigation, annotation, and refinement of the labels.</p>","PeriodicalId":36351,"journal":{"name":"JMIR Human Factors","volume":"12 ","pages":"e56880"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Human Factors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/56880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Increasing use of computational methods in health care provides opportunities to address previously unsolvable problems. Machine learning techniques applied to routinely collected data can enhance clinical tools and improve patient outcomes, but their effective deployment comes with significant challenges. While some tasks can be addressed by training machine learning models directly on the collected data, more complex problems require additional input in the form of data annotations. Data annotation is a complex and time-consuming problem that requires domain expertise and frequently, technical proficiency. With clinicians' time being an extremely limited resource, existing tools fail to provide an effective workflow for deployment in health care.

Objective: This paper investigates the approach of intensive care unit staff to the task of data annotation. Specifically, it aims to (1) understand how clinicians approach data annotation and (2) capture the requirements for a digital annotation tool for the health care setting.

Methods: We conducted an experimental activity involving annotation of the printed excerpts of real time-series admission data with 7 intensive care unit clinicians. Each participant annotated an identical set of admissions with the periods of weaning from mechanical ventilation during a single 45-minute workshop. Participants were observed during task completion and their actions were analyzed within Norman's Interaction Cycle model to identify the software requirements.

Results: Clinicians followed a cyclic process of investigation, annotation, data reevaluation, and label refinement. Variety of techniques were used to investigate data and create annotations. We identified 11 requirements for the digital tool across 4 domains: annotation of individual admissions (n=5), semiautomated annotation (n=3), operational constraints (n=2), and use of labels in machine learning (n=1).

Conclusions: Effective data annotation in a clinical setting relies on flexibility in analysis and label creation and workflow continuity across multiple admissions. There is a need to ensure a seamless transition between data investigation, annotation, and refinement of the labels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Human Factors
JMIR Human Factors Medicine-Health Informatics
CiteScore
3.40
自引率
3.70%
发文量
123
审稿时长
12 weeks
期刊最新文献
Creation of Text Vignettes Based on Patient-Reported Data to Facilitate a Better Understanding of the Patient Perspective: Design Study. Development of a Web-Based Intervention for Middle Managers to Enhance Resilience at the Individual, Team, and Organizational Levels in Health Care Systems: Multiphase Study. Device Failures and Adverse Events Associated With Rhinolaryngoscopes: Analysis of the Manufacturer and User Facility Device Experience (MAUDE) Database. Barriers and Facilitators to User Engagement and Moderation for Web-Based Peer Support Among Young People: Qualitative Study Using the Behavior Change Wheel Framework. Capturing Requirements for a Data Annotation Tool for Intensive Care: Experimental User-Centered Design Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1