Daniel P Ott, Samit Desai, Jachen A Solinger, Andres Kaech, Anne Spang
{"title":"Coordination between ESCRT function and Rab conversion during endosome maturation.","authors":"Daniel P Ott, Samit Desai, Jachen A Solinger, Andres Kaech, Anne Spang","doi":"10.1038/s44318-025-00367-7","DOIUrl":null,"url":null,"abstract":"<p><p>The endosomal pathway is essential for regulating cell signaling and cellular homeostasis. Rab5 positive early endosomes receive proteins from the plasma membrane. Dependent on a ubiquitin mark on the protein, they will be either recycled or sorted into intraluminal vesicles (ILVs) by endosomal sorting complex required for transport (ESCRT) proteins. During endosome maturation Rab5 is replaced by Rab7 on endosomes that are able to fuse with lysosomes to form endolysosomes. However, whether ESCRT-driven ILV formation and Rab5-to-Rab7 conversion are coordinated remains unknown. Here we show that loss of early ESCRTs led to enlarged Rab5 positive endosomes and prohibited Rab conversion. Reduction of ubiquitinated cargo alleviated this phenotype. Moreover, ubiquitinated proteins on the endosomal limiting membrane prevented the displacement of the Rab5 guanine nucleotide exchange factor (GEF) RABX-5 by the GEF for Rab7, SAND-1/CCZ-1. Overexpression of Rab7 could partially overcome this block, even in the absence of SAND-1 or CCZ1, suggesting the presence of a second Rab7 GEF. Our data reveal a hierarchy of events in which cargo corralling by ESCRTs is upstream of Rab conversion, suggesting that ESCRT-0 and ubiquitinated cargo could act as timers that determine the onset of Rab conversion.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00367-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The endosomal pathway is essential for regulating cell signaling and cellular homeostasis. Rab5 positive early endosomes receive proteins from the plasma membrane. Dependent on a ubiquitin mark on the protein, they will be either recycled or sorted into intraluminal vesicles (ILVs) by endosomal sorting complex required for transport (ESCRT) proteins. During endosome maturation Rab5 is replaced by Rab7 on endosomes that are able to fuse with lysosomes to form endolysosomes. However, whether ESCRT-driven ILV formation and Rab5-to-Rab7 conversion are coordinated remains unknown. Here we show that loss of early ESCRTs led to enlarged Rab5 positive endosomes and prohibited Rab conversion. Reduction of ubiquitinated cargo alleviated this phenotype. Moreover, ubiquitinated proteins on the endosomal limiting membrane prevented the displacement of the Rab5 guanine nucleotide exchange factor (GEF) RABX-5 by the GEF for Rab7, SAND-1/CCZ-1. Overexpression of Rab7 could partially overcome this block, even in the absence of SAND-1 or CCZ1, suggesting the presence of a second Rab7 GEF. Our data reveal a hierarchy of events in which cargo corralling by ESCRTs is upstream of Rab conversion, suggesting that ESCRT-0 and ubiquitinated cargo could act as timers that determine the onset of Rab conversion.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.