NEIL3 and TOP2A as key drivers of esophageal cancer through WNT signaling.

0 MEDICINE, RESEARCH & EXPERIMENTAL Biomolecules & biomedicine Pub Date : 2025-01-29 DOI:10.17305/bb.2025.11365
Hui Li, Panpan Wang, Huijuan Chen, Yanyan Shao, Hui Luo
{"title":"NEIL3 and TOP2A as key drivers of esophageal cancer through WNT signaling.","authors":"Hui Li, Panpan Wang, Huijuan Chen, Yanyan Shao, Hui Luo","doi":"10.17305/bb.2025.11365","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal cancer (EC) is a highly aggressive malignancy with limited treatment options. Nei like DNA glycosylase 3 (NEIL3) and DNA topoisomerase II alpha (TOP2A) have been identified as potential therapeutic targets, though their roles in EC remain unclear. This study investigates the effects of NEIL3 overexpression and TOP2A knockdown, focusing on the WNT signaling pathway. ECA109 esophageal cancer cells were used to assess the impact of NEIL3 overexpression and TOP2A knockdown on proliferation, colony formation, migration, invasion, and apoptosis. The involvement of the WNT signaling pathway was also explored. NEIL3 overexpression significantly enhanced proliferation, colony formation, migration, and invasion while reducing apoptosis. In contrast, TOP2A knockdown suppressed these functions and promoted apoptosis, independent of NEIL3. NEIL3 overexpression could not reverse the effects of TOP2A knockdown. Both NEIL3 and TOP2A acted through the WNT signaling pathway. In vivo, NEIL3 knockdown reduced tumor size and weight via WNT pathway modulation. NEIL3 and TOP2A play key roles in EC progression through the WNT signaling pathway. Targeting these molecules may offer promising therapeutic strategies for EC.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2025.11365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Esophageal cancer (EC) is a highly aggressive malignancy with limited treatment options. Nei like DNA glycosylase 3 (NEIL3) and DNA topoisomerase II alpha (TOP2A) have been identified as potential therapeutic targets, though their roles in EC remain unclear. This study investigates the effects of NEIL3 overexpression and TOP2A knockdown, focusing on the WNT signaling pathway. ECA109 esophageal cancer cells were used to assess the impact of NEIL3 overexpression and TOP2A knockdown on proliferation, colony formation, migration, invasion, and apoptosis. The involvement of the WNT signaling pathway was also explored. NEIL3 overexpression significantly enhanced proliferation, colony formation, migration, and invasion while reducing apoptosis. In contrast, TOP2A knockdown suppressed these functions and promoted apoptosis, independent of NEIL3. NEIL3 overexpression could not reverse the effects of TOP2A knockdown. Both NEIL3 and TOP2A acted through the WNT signaling pathway. In vivo, NEIL3 knockdown reduced tumor size and weight via WNT pathway modulation. NEIL3 and TOP2A play key roles in EC progression through the WNT signaling pathway. Targeting these molecules may offer promising therapeutic strategies for EC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Methylene blue mitigates lung injury in HCA rats by regulating macrophage pyroptosis via Nrf2/HO-1 and NLRP3 pathways. Andrographolide suppresses cervical cancer progression by targeting angiogenesis and inducing apoptosis in a CAM-PDX model. Multi-omics reveals that ST6GAL1 promotes colorectal cancer progression through LGALS3BP sialylation. Jianpi Yiqi Busui prescription alleviates myasthenia gravis by regulating Th17 through the TAK1/P38 MAPK/eIF-4E signaling pathway. Fecal microbiota transplantation alleviates radiation enteritis by modulating gut microbiota and metabolite profiles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1