Yiding Yu , Xiujuan Liu , Wenwen Liu , Huajing Yuan , Quancheng Han , Jingle Shi , Yitao Xue , Yan Li
{"title":"Decoding the cytokine code for heart failure based on bioinformatics, machine learning and Bayesian networks","authors":"Yiding Yu , Xiujuan Liu , Wenwen Liu , Huajing Yuan , Quancheng Han , Jingle Shi , Yitao Xue , Yan Li","doi":"10.1016/j.bbadis.2025.167701","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Despite maximal pharmacological treatment guided by clinical guidelines, the prognosis of heart failure (HF) remains poor, posing a significant public health burden. This necessitates uncovering novel pathological and cardioprotective pathways. Targeting cytokines presents a promising therapeutic strategy for HF, yet their intricate mechanisms in HF progression remain obscure.</div></div><div><h3>Methods</h3><div>HF datasets were obtained from the GEO database. Cytokine-related genes were identified through WGCNA and the CytReg database. GO and KEGG enrichment analyses were conducted using the clusterProfiler package. Reactome pathway enrichment analysis and Bayesian regulatory network construction were performed using the CBNplot package. Key genes were identified via LASSO regression and RF algorithms, with diagnostic accuracy evaluated by ROC curves. Potential therapeutic drugs were predicted using the DSigDB database, and immune cell infiltration was assessed with the CIBERSORT package.</div></div><div><h3>Results</h3><div>We identified 13 cytokine-related genes associated with HF. Enrichment analyses indicated these genes mediate inflammatory responses and immune cell recruitment. Bayesian network analysis revealed two cytokine regulatory chains: IL34-CCL5-CCL4 and IL34-CCL5-CXCL12. Machine learning algorithms identified five key cytokine genes: CCL4, CCL5, CXCL12, CXCL14, and IL34. The DSigDB database predicted 47 potential therapeutic drugs, including Proscillaridin. Immune infiltration analysis showed significant differences in seven immune cell types between HF and healthy samples.</div></div><div><h3>Conclusion</h3><div>Our study provides insights into cytokines' molecular mechanisms in HF pathophysiology and highlights potential immunomodulatory strategies, gene therapies, and candidate drugs. Future research should validate these findings in clinical settings to develop effective HF therapies.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 3","pages":"Article 167701"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925000468","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Despite maximal pharmacological treatment guided by clinical guidelines, the prognosis of heart failure (HF) remains poor, posing a significant public health burden. This necessitates uncovering novel pathological and cardioprotective pathways. Targeting cytokines presents a promising therapeutic strategy for HF, yet their intricate mechanisms in HF progression remain obscure.
Methods
HF datasets were obtained from the GEO database. Cytokine-related genes were identified through WGCNA and the CytReg database. GO and KEGG enrichment analyses were conducted using the clusterProfiler package. Reactome pathway enrichment analysis and Bayesian regulatory network construction were performed using the CBNplot package. Key genes were identified via LASSO regression and RF algorithms, with diagnostic accuracy evaluated by ROC curves. Potential therapeutic drugs were predicted using the DSigDB database, and immune cell infiltration was assessed with the CIBERSORT package.
Results
We identified 13 cytokine-related genes associated with HF. Enrichment analyses indicated these genes mediate inflammatory responses and immune cell recruitment. Bayesian network analysis revealed two cytokine regulatory chains: IL34-CCL5-CCL4 and IL34-CCL5-CXCL12. Machine learning algorithms identified five key cytokine genes: CCL4, CCL5, CXCL12, CXCL14, and IL34. The DSigDB database predicted 47 potential therapeutic drugs, including Proscillaridin. Immune infiltration analysis showed significant differences in seven immune cell types between HF and healthy samples.
Conclusion
Our study provides insights into cytokines' molecular mechanisms in HF pathophysiology and highlights potential immunomodulatory strategies, gene therapies, and candidate drugs. Future research should validate these findings in clinical settings to develop effective HF therapies.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.