Dynamic characteristics of a two-phase mechanically pumped cooling loop for avionics

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS Case Studies in Thermal Engineering Pub Date : 2025-02-03 DOI:10.1016/j.csite.2025.105830
Shaohuan Qi, Zhaohao Xu, Jiale Wang, Yu Xu
{"title":"Dynamic characteristics of a two-phase mechanically pumped cooling loop for avionics","authors":"Shaohuan Qi,&nbsp;Zhaohao Xu,&nbsp;Jiale Wang,&nbsp;Yu Xu","doi":"10.1016/j.csite.2025.105830","DOIUrl":null,"url":null,"abstract":"<div><div>Given the varying flight conditions and mission requirements that affect aircraft cold sources and heat loads, it is crucial to investigate the dynamic behavior of a two-phase mechanically pumped cooling loop (MPCL) for avionics. Here, an experimental MPCL system charged with R134a was established, and its performance was evaluated under cold source temperatures of 16–46 °C and heat fluxes of 50–150 kW/m<sup>2</sup>. When the cold source temperature varies, the heating wall temperature and pressure drop are 33.7–60.0 °C and 78.0−119.6 kPa for unadjustable pump mode, and they are 34.1–60.0 °C and 59.6−124.6 kPa for adjustable pump mode. When heat load starts, the heating wall temperature and pressure drop rapid rise, and then stabilize. For low temperature start-up, the heating wall temperature is lower, but the pressure drop is usually higher compared to high temperature start-up. When heat load jumps, heating wall temperature and pressure drop rise and then stabilize regardless of pump mode. The pump mode has a minor impact on the heating wall temperature, but the pressure drop is greater in adjustable mode than in unadjustable mode. The findings indicate the designed MPCL can always tend to be stable when the cold source or heat load change.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"67 ","pages":"Article 105830"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25000905","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given the varying flight conditions and mission requirements that affect aircraft cold sources and heat loads, it is crucial to investigate the dynamic behavior of a two-phase mechanically pumped cooling loop (MPCL) for avionics. Here, an experimental MPCL system charged with R134a was established, and its performance was evaluated under cold source temperatures of 16–46 °C and heat fluxes of 50–150 kW/m2. When the cold source temperature varies, the heating wall temperature and pressure drop are 33.7–60.0 °C and 78.0−119.6 kPa for unadjustable pump mode, and they are 34.1–60.0 °C and 59.6−124.6 kPa for adjustable pump mode. When heat load starts, the heating wall temperature and pressure drop rapid rise, and then stabilize. For low temperature start-up, the heating wall temperature is lower, but the pressure drop is usually higher compared to high temperature start-up. When heat load jumps, heating wall temperature and pressure drop rise and then stabilize regardless of pump mode. The pump mode has a minor impact on the heating wall temperature, but the pressure drop is greater in adjustable mode than in unadjustable mode. The findings indicate the designed MPCL can always tend to be stable when the cold source or heat load change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
期刊最新文献
Comprehensive study on cooling effectiveness and thermoelectric conversion of a novel helium/hydrogen-based closed Brayton cooling system for a hydrogen aero-engine Study on the vacuum freeze-drying of banana and impact on powder properties Earth–lunar thermal effect on the temperature stability of TianQin telescope and the suppression methods Investigating the influence of heterocyclic Schiff bases as a biofuel additive on combustion, performance and emissions The real driving emissions characteristics of light-duty diesel vehicle in four typical cities with varying altitudes in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1