Songlin Yan, Weihong Liu, Jianjun Long, Kun Wang, Qilu Yao, Gang Feng, Zhang-Hui Lu
{"title":"Photothermal conversion enhances selective hydrogenation over MOF-derived Cu-MoO2 interfaces at ambient condition","authors":"Songlin Yan, Weihong Liu, Jianjun Long, Kun Wang, Qilu Yao, Gang Feng, Zhang-Hui Lu","doi":"10.1039/d4qi03188a","DOIUrl":null,"url":null,"abstract":"The selective hydrogenation of nitroaromatic compounds to produce phenylamines plays a crucial role in various industrial processes. Here we introduce a Cu-MoO2@C catalyst which is synthesized by pyrolyzing a polyoxometalate-based metal-organic framework (POMOF), exhibiting remarkable catalytic efficiency in the selective hydrogenation of nitroaromatics. Specifically, nearly 100% conversion and 97% selectivity in hydrogenation of 4-nitrostyrene (4-NS) to 4-aminostyrene (4-AS) was achieved over Cu-MoO2@C catalyst under light irradiation. This promoted yield of 4-AS is ascribed to the plasmonic photothermal effect of Cu nanoparticles (NPs) which facilitate efficient photothermal conversion, as well as the strong electronic interactions at Cu/MoO2 interfaces which facilitate the selective reduction of the N=O bond and minimizing reduction of the C=C bond. Furthermore, the Cu-MoO2@C catalyst demonstrates outstanding stability, maintaining high catalytic activity across eight cycles with minimal performance degradation. Its versatility was evidenced by the effective hydrogenation of a variety of nitroaromatic substrates containing different reducible functional groups. This study underscores the potential of Cu-MoO2@C as an efficient, stable, and adaptable catalyst for the selective hydrogenation of nitroaromatic compounds, presenting a promising solution for industrial applications.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"44 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi03188a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The selective hydrogenation of nitroaromatic compounds to produce phenylamines plays a crucial role in various industrial processes. Here we introduce a Cu-MoO2@C catalyst which is synthesized by pyrolyzing a polyoxometalate-based metal-organic framework (POMOF), exhibiting remarkable catalytic efficiency in the selective hydrogenation of nitroaromatics. Specifically, nearly 100% conversion and 97% selectivity in hydrogenation of 4-nitrostyrene (4-NS) to 4-aminostyrene (4-AS) was achieved over Cu-MoO2@C catalyst under light irradiation. This promoted yield of 4-AS is ascribed to the plasmonic photothermal effect of Cu nanoparticles (NPs) which facilitate efficient photothermal conversion, as well as the strong electronic interactions at Cu/MoO2 interfaces which facilitate the selective reduction of the N=O bond and minimizing reduction of the C=C bond. Furthermore, the Cu-MoO2@C catalyst demonstrates outstanding stability, maintaining high catalytic activity across eight cycles with minimal performance degradation. Its versatility was evidenced by the effective hydrogenation of a variety of nitroaromatic substrates containing different reducible functional groups. This study underscores the potential of Cu-MoO2@C as an efficient, stable, and adaptable catalyst for the selective hydrogenation of nitroaromatic compounds, presenting a promising solution for industrial applications.