Jiaqi Zhu, Youning Gong, Jun Liang, Yanyu Zhao, Zhe Cui, Delong Li, Qingdong Ou, Yupeng Zhang, Guo Ping Wang
{"title":"Multiple Hyperbolic Dispersion Branches and Broadband Canalization in a Phonon-Polaritonic Heterostructure","authors":"Jiaqi Zhu, Youning Gong, Jun Liang, Yanyu Zhao, Zhe Cui, Delong Li, Qingdong Ou, Yupeng Zhang, Guo Ping Wang","doi":"10.1021/acs.nanolett.4c04633","DOIUrl":null,"url":null,"abstract":"Hyperbolic polaritons in anisotropic crystals hold great promise for guiding the flow of light at deep-subwavelength scales. However, conventional hyperbolic dispersion with a single pair of symmetric branches inherently confines polaritons to propagate only within specific spatial directions. Here we demonstrate a multibranch in-plane hyperbolic dispersion in a phonon-polaritonic heterostructure composed of α-phase molybdenum trioxide (α-MoO<sub>3</sub>) and 4H-silicon carbide (4H-SiC). Leveraging the in-plane hyperbolicity of α-MoO<sub>3</sub> and the interlayer coupling with 4H-SiC, the polaritons manifest distinct dispersive responses along the mutually orthogonal crystal directions of α-MoO<sub>3</sub>, enabling asymmetric multidirectional polariton propagation. Furthermore, the dispersion contours of polaritons along the [100] crystal direction of α-MoO<sub>3</sub> evolves into flat bands as the frequency decreases, yielding broadband polariton canalization in the low-frequency region. These findings deepen our understanding of the evolution of polariton dispersions in α-MoO<sub>3</sub>/4H-SiC heterostructures and highlight the potential of this phonon-polaritonic heterostructure as a versatile platform for nanolight manipulation.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"62 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04633","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperbolic polaritons in anisotropic crystals hold great promise for guiding the flow of light at deep-subwavelength scales. However, conventional hyperbolic dispersion with a single pair of symmetric branches inherently confines polaritons to propagate only within specific spatial directions. Here we demonstrate a multibranch in-plane hyperbolic dispersion in a phonon-polaritonic heterostructure composed of α-phase molybdenum trioxide (α-MoO3) and 4H-silicon carbide (4H-SiC). Leveraging the in-plane hyperbolicity of α-MoO3 and the interlayer coupling with 4H-SiC, the polaritons manifest distinct dispersive responses along the mutually orthogonal crystal directions of α-MoO3, enabling asymmetric multidirectional polariton propagation. Furthermore, the dispersion contours of polaritons along the [100] crystal direction of α-MoO3 evolves into flat bands as the frequency decreases, yielding broadband polariton canalization in the low-frequency region. These findings deepen our understanding of the evolution of polariton dispersions in α-MoO3/4H-SiC heterostructures and highlight the potential of this phonon-polaritonic heterostructure as a versatile platform for nanolight manipulation.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.