New insights into the retardation mechanism of phosphorus slag on the early cement hydration

IF 10.8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Cement & concrete composites Pub Date : 2025-02-07 DOI:10.1016/j.cemconcomp.2025.105963
Shiyu Zhuang , Qiang Wang , Yichen Shan , Ruiquan Jia , Zihan Zhou
{"title":"New insights into the retardation mechanism of phosphorus slag on the early cement hydration","authors":"Shiyu Zhuang ,&nbsp;Qiang Wang ,&nbsp;Yichen Shan ,&nbsp;Ruiquan Jia ,&nbsp;Zihan Zhou","doi":"10.1016/j.cemconcomp.2025.105963","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphorus slag (PS) is widely reported to retard the cement hydration due to the existence of phosphorus and fluorine in it. However, the key role and its corresponding mechanism have not been fully reported. In this study, the effects of PS on the early cement hydration were investigated from the insights of solid phases, aqueous species and microstructures evolution. Results show that PS remarkably prolongs the induction period and setting time, and delays the microstructure evolution of cement paste. PS retards the early hydration of C<sub>3</sub>S, inhibiting the precipitation of C-S-H and portlandite, but promotes the hydration of C<sub>3</sub>A. It is likely that the insoluble phosphorus-fluorine compound in PS plays a more important role in the retardation. The doping of calcium or silicon in the phosphorus-fluorine compound can restrict its retarding effect on the early cement hydration.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"158 ","pages":"Article 105963"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525000459","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus slag (PS) is widely reported to retard the cement hydration due to the existence of phosphorus and fluorine in it. However, the key role and its corresponding mechanism have not been fully reported. In this study, the effects of PS on the early cement hydration were investigated from the insights of solid phases, aqueous species and microstructures evolution. Results show that PS remarkably prolongs the induction period and setting time, and delays the microstructure evolution of cement paste. PS retards the early hydration of C3S, inhibiting the precipitation of C-S-H and portlandite, but promotes the hydration of C3A. It is likely that the insoluble phosphorus-fluorine compound in PS plays a more important role in the retardation. The doping of calcium or silicon in the phosphorus-fluorine compound can restrict its retarding effect on the early cement hydration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cement & concrete composites
Cement & concrete composites 工程技术-材料科学:复合
CiteScore
18.70
自引率
11.40%
发文量
459
审稿时长
65 days
期刊介绍: Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.
期刊最新文献
Optimization and performance regulation of pipe piles based on nano-calcium silicate hydrated (n-C-S-H) New insights into the retardation mechanism of phosphorus slag on the early cement hydration Development of 3D-printable alkali-activated GGBFS and fly ash binder-based mortars with concrete demolition waste as aggregates X-ray computed tomography-based characterisation of graphene nanoplatelets re-agglomeration in hardened cement composites Innovative ZIF-8 modified ER@EC microcapsules: Enhancing slow-release and longevity for superior self-healing in cementitious materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1