Remote cooling of spin-ensembles through a spin-mechanical hybrid interface

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2025-02-07 DOI:10.1038/s41534-025-00968-4
Yang Wang, Durga Bhaktavatsala Rao Dasari, Jörg Wrachtrup
{"title":"Remote cooling of spin-ensembles through a spin-mechanical hybrid interface","authors":"Yang Wang, Durga Bhaktavatsala Rao Dasari, Jörg Wrachtrup","doi":"10.1038/s41534-025-00968-4","DOIUrl":null,"url":null,"abstract":"<p>We present a protocol for the ground-state cooling of a tripartite hybrid quantum system, in which a macroscopic oscillator acts as a mediator between a single-probe spin and a remote spin ensemble. In the presence of weak dispersive coupling between the spins and the oscillator, cooling of the oscillator and the ensemble spins can be achieved by exploiting the feedback from frequent measurements of the single-probe spin. We explore the parameter regimes necessary to cool the ensemble, the oscillator, or both to their thermal ground states. This novel cooling protocol shows that, even with only weak dispersive coupling, energy transfer-like effects can be obtained by simply manipulating the probe spin. These results not only contribute to the development of a practical solution for cooling/polarizing large spin ensembles but also provide a relatively simple means of tuning the dynamics of a hybrid system. The proposed protocol thus has broader implications for advancing various quantum technology applications, such as macroscopic quantum state generation and remote sensing.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"16 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00968-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a protocol for the ground-state cooling of a tripartite hybrid quantum system, in which a macroscopic oscillator acts as a mediator between a single-probe spin and a remote spin ensemble. In the presence of weak dispersive coupling between the spins and the oscillator, cooling of the oscillator and the ensemble spins can be achieved by exploiting the feedback from frequent measurements of the single-probe spin. We explore the parameter regimes necessary to cool the ensemble, the oscillator, or both to their thermal ground states. This novel cooling protocol shows that, even with only weak dispersive coupling, energy transfer-like effects can be obtained by simply manipulating the probe spin. These results not only contribute to the development of a practical solution for cooling/polarizing large spin ensembles but also provide a relatively simple means of tuning the dynamics of a hybrid system. The proposed protocol thus has broader implications for advancing various quantum technology applications, such as macroscopic quantum state generation and remote sensing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Stabilization of Kerr-cat qubits with quantum circuit refrigerator Contextual subspace variational quantum eigensolver calculation of the dissociation curve of molecular nitrogen on a superconducting quantum computer Remote cooling of spin-ensembles through a spin-mechanical hybrid interface Universal validity of the second law of information thermodynamics Scalable temporal multiplexing of telecom photons via thin-film lithium niobate photonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1