Jie Fu, Shuhua Chen, Xinlin Liu, Haoyue Yang, Yeping Xie, Qiao Zhang, Jinxing Chen, Muhan Cao
{"title":"Soluble polymer microenvironments promote photocatalytic hydrogen peroxide production and self-Fenton reactions","authors":"Jie Fu, Shuhua Chen, Xinlin Liu, Haoyue Yang, Yeping Xie, Qiao Zhang, Jinxing Chen, Muhan Cao","doi":"10.1016/j.checat.2024.101260","DOIUrl":null,"url":null,"abstract":"Photocatalytic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production is a promising green technology, but it typically relies on costly sacrificial agents to enhance charge separation and catalytic efficiency. Waste polymers offer a cost-effective alternative, effectively addressing waste management and resource utilization challenges. Herein, we employ waste polymer polyvinyl alcohol (PVA) as a sacrificial agent for photocatalytic H<sub>2</sub>O<sub>2</sub> production, avoiding the harsh and complex hydrolysis process of polyesters and polyolefins. Importantly, the unique structure of PVA creates a localized microenvironment with abundant hydroxyl groups, significantly increasing the H<sub>2</sub>O<sub>2</sub> yield compared with those of conventional sacrificial agents. Additionally, the introduction of iron ions triggers a photo-self-Fenton (PSF) reaction. The hydroxyl groups on the PVA chain facilitate strong interactions with iron species, thereby enhancing the Fe<sup>3+</sup>/Fe<sup>2+</sup> redox cycle and enabling the simultaneous removal of both PVA and other pollutants. This approach offers a novel and sustainable pathway for the direct utilization of polymer waste.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"36 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic hydrogen peroxide (H2O2) production is a promising green technology, but it typically relies on costly sacrificial agents to enhance charge separation and catalytic efficiency. Waste polymers offer a cost-effective alternative, effectively addressing waste management and resource utilization challenges. Herein, we employ waste polymer polyvinyl alcohol (PVA) as a sacrificial agent for photocatalytic H2O2 production, avoiding the harsh and complex hydrolysis process of polyesters and polyolefins. Importantly, the unique structure of PVA creates a localized microenvironment with abundant hydroxyl groups, significantly increasing the H2O2 yield compared with those of conventional sacrificial agents. Additionally, the introduction of iron ions triggers a photo-self-Fenton (PSF) reaction. The hydroxyl groups on the PVA chain facilitate strong interactions with iron species, thereby enhancing the Fe3+/Fe2+ redox cycle and enabling the simultaneous removal of both PVA and other pollutants. This approach offers a novel and sustainable pathway for the direct utilization of polymer waste.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.