{"title":"Building photonic links for microwave quantum processors","authors":"Han Zhao","doi":"10.1515/nanoph-2024-0599","DOIUrl":null,"url":null,"abstract":"Optical photons play unique role in transmitting information over long distances. Photonic links by the optical fiber networks compose the backbone of today’s global internet. Such fiber optics can also provide the most cost-effective quantum channels to distribute quantum information across distant stationary nodes in future large-scale quantum networks. This prospect motivates the recent emerging efforts in developing microwave-optical quantum transduction technology to interconnect microwave quantum processors. Various frequency conversion approaches are investigated to efficiently bridge the enormous electromagnetic frequency gap while preserving quantum coherence. Nonetheless, high-fidelity entanglement generation between remote quantum processing units has remained out of reach to date. Here, we summarize the state-of-the-art progresses in quantum transducer engineering and provide the perspectives on the key challenges and opportunities toward optically heralded quantum entanglement distributions.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"79 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0599","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical photons play unique role in transmitting information over long distances. Photonic links by the optical fiber networks compose the backbone of today’s global internet. Such fiber optics can also provide the most cost-effective quantum channels to distribute quantum information across distant stationary nodes in future large-scale quantum networks. This prospect motivates the recent emerging efforts in developing microwave-optical quantum transduction technology to interconnect microwave quantum processors. Various frequency conversion approaches are investigated to efficiently bridge the enormous electromagnetic frequency gap while preserving quantum coherence. Nonetheless, high-fidelity entanglement generation between remote quantum processing units has remained out of reach to date. Here, we summarize the state-of-the-art progresses in quantum transducer engineering and provide the perspectives on the key challenges and opportunities toward optically heralded quantum entanglement distributions.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.