{"title":"Baseline-free structured light 3D imaging using a metasurface double-helix dot projector","authors":"Zicheng Shen, Yibo Ni, Yuanmu Yang","doi":"10.1515/nanoph-2024-0668","DOIUrl":null,"url":null,"abstract":"Structured light is a widely used 3D imaging method with a drawback that it typically requires a long baseline length between the laser projector and the camera sensor, which hinders its utilization in space-constrained scenarios. On the other hand, the application of passive 3D imaging methods, such as depth from depth-dependent point spread functions (PSFs), is impeded by the challenge in measuring textureless scenes. Here, we combine the advantages of both structured light and depth-dependent PSFs and propose a baseline-free structured light 3D imaging system. A metasurface is designed to project a structured dot array and encode depth information in the double-helix pattern of each dot simultaneously. Combined with a straightforward and fast algorithm, we demonstrate accurate 3D point cloud acquisition for various real-world scenarios including multiple cardboard boxes and a living human face. Such a technique may find application in a broad range of areas including consumer electronics and precision metrology.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"20 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0668","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Structured light is a widely used 3D imaging method with a drawback that it typically requires a long baseline length between the laser projector and the camera sensor, which hinders its utilization in space-constrained scenarios. On the other hand, the application of passive 3D imaging methods, such as depth from depth-dependent point spread functions (PSFs), is impeded by the challenge in measuring textureless scenes. Here, we combine the advantages of both structured light and depth-dependent PSFs and propose a baseline-free structured light 3D imaging system. A metasurface is designed to project a structured dot array and encode depth information in the double-helix pattern of each dot simultaneously. Combined with a straightforward and fast algorithm, we demonstrate accurate 3D point cloud acquisition for various real-world scenarios including multiple cardboard boxes and a living human face. Such a technique may find application in a broad range of areas including consumer electronics and precision metrology.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.