Proteomic Analysis of Unicellular Cyanobacterium Crocosphaera subtropica ATCC 51142 under Extended Light or Dark Growth

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2025-01-29 DOI:10.1021/acs.jproteome.4c0043910.1021/acs.jproteome.4c00439
Punyatoya Panda, Swagarika J. Giri, Louis A. Sherman, Daisuke Kihara* and Uma K. Aryal*, 
{"title":"Proteomic Analysis of Unicellular Cyanobacterium Crocosphaera subtropica ATCC 51142 under Extended Light or Dark Growth","authors":"Punyatoya Panda,&nbsp;Swagarika J. Giri,&nbsp;Louis A. Sherman,&nbsp;Daisuke Kihara* and Uma K. Aryal*,&nbsp;","doi":"10.1021/acs.jproteome.4c0043910.1021/acs.jproteome.4c00439","DOIUrl":null,"url":null,"abstract":"<p >The daily light–dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium <i>Crocosphaera subtropica</i> ATCC 51142. We quantified 2287 proteins, of which 603 proteins, were significantly different between the two growth conditions. These proteins represent several biological processes, including photosynthetic electron transport, carbon fixation, stress responses, translation, and protein degradation. One significant observation is the regulation of over two dozen proteases, including ATP-dependent Clp-proteases (endopeptidases) and metalloproteases, the majority of which were upregulated in LL compared to DD. This suggests that proteases play a crucial role in the regulation and maintenance of photosynthesis, especially the PSI and PSII components. The higher protease activity in LL indicates a need for more frequent degradation and repair of certain photosynthetic components, highlighting the dynamic nature of protein turnover and quality control mechanisms in response to prolonged light exposure. The results enhance our understanding of how <i>Crocosphaera subtropica</i> ATCC 51142 adjusts its molecular machinery in response to extended light or dark growth conditions.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 2","pages":"419–432 419–432"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00439","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The daily light–dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium Crocosphaera subtropica ATCC 51142. We quantified 2287 proteins, of which 603 proteins, were significantly different between the two growth conditions. These proteins represent several biological processes, including photosynthetic electron transport, carbon fixation, stress responses, translation, and protein degradation. One significant observation is the regulation of over two dozen proteases, including ATP-dependent Clp-proteases (endopeptidases) and metalloproteases, the majority of which were upregulated in LL compared to DD. This suggests that proteases play a crucial role in the regulation and maintenance of photosynthesis, especially the PSI and PSII components. The higher protease activity in LL indicates a need for more frequent degradation and repair of certain photosynthetic components, highlighting the dynamic nature of protein turnover and quality control mechanisms in response to prolonged light exposure. The results enhance our understanding of how Crocosphaera subtropica ATCC 51142 adjusts its molecular machinery in response to extended light or dark growth conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
Multiplatform Lipid Analysis of the Brain of Aging Mice by Mass Spectrometry. O-GlcNAcylation: Sagacious Orchestrator of Bone-, Joint-, and Spine-Related Diseases. Issue Publication Information Issue Editorial Masthead Deep Saliva Proteomics Elucidating the Pathogenesis of Early Childhood Caries and Identifying Biomarkers for Early Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1